Spaces:
No application file
No application file
File size: 10,832 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# -*- encoding: utf-8 -*-
# here put the import lib
import os
import sys
import argparse
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
import glob
from tqdm import tqdm
import pickle
import json
import cv2
import parser
import pandas as pd
import random
import pdb
from torchvision.ops import nms
import traceback
from moviepy.editor import VideoFileClip
import hashlib
from bbox_extractor.bbox_extractor import BboxExtractor
from img_feat_extractor import generate_folder_csv
from utils import getLanMask
from utils.config import cfg_from_yaml_file, cfg
from models.vl_model import *
class ImgModel(nn.Module):
def __init__(self, model_cfg):
super(ImgModel, self).__init__()
self.model_cfg = model_cfg
self.learnable = nn.ModuleDict()
self.learnable['imgencoder'] = ImgLearnableEncoder(model_cfg)
def forward(self, imgFea, maskImages, image_boxs):
imgFea = self.learnable['imgencoder'](imgFea, maskImages, image_boxs) # <bsz, img_dim>
imgFea = F.normalize(imgFea, p=2, dim=-1)
return imgFea
class ImgFeatureExtractor:
def __init__(self, cfg_file, model_weights, gpu_id=0):
self.gpu_id = gpu_id
self.cfg_file = cfg_file
self.cfg = cfg_from_yaml_file(self.cfg_file, cfg)
self.img_model = ImgModel(model_cfg=self.cfg.MODEL)
self.img_model = self.img_model.cuda(self.gpu_id)
model_component = torch.load(model_weights, map_location=torch.device('cuda:{}'.format(self.gpu_id)))
img_model_component = {}
for key in model_component["learnable"].keys():
if "imgencoder." in key:
img_model_component[key] = model_component["learnable"][key]
self.img_model.learnable.load_state_dict(img_model_component)
self.img_model.eval()
self.visual_transform = self.visual_transforms_box(self.cfg.MODEL.IMG_SIZE)
def visual_transforms_box(self, new_size=456):
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
return transforms.Compose([
transforms.ToTensor(),
transforms.Resize((new_size, new_size)),
normalize])
def extract(self, img_path, bboxes):
if type(img_path)==str:
image = Image.open(img_path).convert('RGB')
else:
image = Image.fromarray(img_path)
if image is None:
return None
else:
width, height = image.size
new_size = self.cfg.MODEL.IMG_SIZE
img_box_s = []
for box_i in bboxes[:self.cfg.MODEL.MAX_IMG_LEN - 1]: # [x1, y1, x2, y2]
x1, y1, x2, y2 = box_i[0] * (new_size / width), box_i[1] * (new_size / height), box_i[2] * (
new_size / width), box_i[3] * (new_size / height)
img_box_s.append(torch.from_numpy(np.array([x1, y1, x2, y2]).astype(np.float32)))
img_box_s.append(torch.from_numpy(np.array([0, 0, new_size, new_size]).astype(np.float32)))
image_boxs = torch.stack(img_box_s, 0) # <36, 4>
image = self.visual_transform(image)
img_len = torch.full((1,), self.cfg.MODEL.MAX_IMG_LEN, dtype=torch.long)
with torch.no_grad():
imgs = image.unsqueeze(0) # <batchsize, 3, image_size, image_size>
img_lens = img_len.unsqueeze(0).view(-1)
image_boxs = image_boxs.unsqueeze(0) # <BSZ, 36, 4>
# get image mask
imgMask = getLanMask(img_lens, cfg.MODEL.MAX_IMG_LEN)
imgMask = imgMask.cuda(self.gpu_id)
imgs = imgs.cuda(self.gpu_id)
image_boxs = image_boxs.cuda(self.gpu_id) # <BSZ, 36, 4>
img_fea = self.img_model(imgs, imgMask, image_boxs)
img_fea = img_fea.cpu().numpy()
return img_fea
def main(video_path, save_path, map_path, vf_extractor, bbx_extr):
video_name = '.'.join(video_path.split('/')[-1].split('.')[:-1])
if not os.path.exists(save_path):
os.makedirs(save_path)
# video_hash_code = (os.popen('md5sum {}'.format(video_path))).readlines()[0].split(' ')[0]
with open(video_path, 'rb') as fd:
data = fd.read()
video_hash_code = hashlib.md5(data).hexdigest()
save_path = os.path.join(save_path, '{}_{}.json'.format(video_name, video_hash_code[:8]))
if os.path.exists(save_path) and not args.overwrite:
print('exists ' + save_path)
pass
else:
map_path = os.path.join(map_path, '{}_{}.json'.format(video_name, video_hash_code[:8]))
if not os.path.exists(map_path):
print('map not exist: ', map_path)
return
video_map = json.load(open(map_path), encoding='UTF-8')
assert video_hash_code == video_map["video_file_hash_code"]
fps = 1
max_frame_num = 5
select_frame_idx = []
select_frame_clip = []
for i in range(len(video_map["clips"])):
clip = video_map["clips"][i]
if clip["cliptype"] == "transition":
continue
select_frame_num = int(min(np.ceil(clip["duration"] * fps), max_frame_num))
clip_total_frame_num = clip["frame_end"] - clip["frame_start"]
frame_duration = clip_total_frame_num // (select_frame_num + 1)
for j in range(select_frame_num):
select_frame_idx.append(clip["frame_start"] + (j + 1) * frame_duration)
select_frame_clip.append(i)
print(len(select_frame_idx), len(set(select_frame_idx)))
# Capture video
video = VideoFileClip(video_path)
video = video.crop(*video_map["content_box"])
fps = video.fps
duration = video.duration
total_frames = int(duration * fps)
width, height = video.size
print('fps, frame_count, width, height:', fps, total_frames, width, height)
cnt_frame, step = 0, 0
for frame in video.iter_frames(fps=video_map["sample_fps"]):
if step == len(select_frame_idx):
break
if cnt_frame == select_frame_idx[step]:
bboxes = bbx_extr.extract_bboxes(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
bboxes = bboxes.tolist()
fea = vf_extractor.extract(frame, bboxes)
fea = fea.squeeze(axis=0).tolist()
if "feat" in video_map["clips"][select_frame_clip[step]]:
video_map["clips"][select_frame_clip[step]]["feat"].append(fea)
else:
video_map["clips"][select_frame_clip[step]]["feat"] = [fea]
step += 1
cnt_frame += 1
# while ret and step < len(select_frame_idx):
# if cnt_frame == select_frame_idx[step]:
# _, frame = video.retrieve()
# bboxes = bbx_extr.extract_bboxes(frame)
# bboxes = bboxes.tolist()
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# fea = vf_extractor.extract(frame, bboxes)
# fea = fea.squeeze(axis=0).tolist()
# # save_path = os.path.join(args.feat_save_dir, video_name)
# # if not os.path.exists(save_path):
# # os.makedirs(save_path)
# # np.save(os.path.join(save_path, '{:0>8d}.npy'.format(cnt_frame)), fea)
# if "feat" in video_map["clips"][select_frame_clip[step]]:
# video_map["clips"][select_frame_clip[step]]["feat"].append(fea)
# else:
# video_map["clips"][select_frame_clip[step]]["feat"] = [fea]
#
# step += 1
# print(cnt_frame)
#
# cnt_frame += 1
# ret = video.grab()
# video.release()
for clip in video_map["clips"]:
clip["multi_factor"] = {"semantics": None}
if "feat" in clip:
clip["multi_factor"]["semantics"] = np.mean(np.array(clip["feat"]), axis=0).tolist()
with open(save_path, "w", encoding="utf-8") as fp:
json.dump(video_map, fp, ensure_ascii=False, indent=4)
if __name__ == '__main__':
# python img_feat_extractor.py --frames_dir ./frames --vid_dir /data_share5/douyin/video --vid_csv_path ./vids.csv --feat_save_dir feats
parser = argparse.ArgumentParser()
parser.add_argument('-src_path', type=str, default='/innovation_cfs/entertainment/VideoMashup/video')
parser.add_argument('-dst_path', type=str,
default='/innovation_cfs/entertainment/VideoMashup/video_map/transnetv2_duration_frameidx_moviepy_feat')
parser.add_argument('-map_path', type=str,
default='/innovation_cfs/entertainment/VideoMashup/video_map/transnetv2_duration_frameidx_moviepy')
# parser.add_argument('--frames_dir', type=str, default=None)
# parser.add_argument('--vid_csv_path', type=str, default=None)
parser.add_argument('--feat_save_dir', type=str, default=None)
parser.add_argument('--cfg_file', type=str, default='cfg/test_xyb.yml')
parser.add_argument('--brivl_checkpoint', type=str,
default='/innovation_cfs/mmatch/infguo/weights/BriVL-1.0-5500w.pth')
parser.add_argument('--bbox_extractor_cfg', type=str,
default='bbox_extractor/configs/bua-caffe/extract-bua-caffe-r101.yaml')
parser.add_argument('-overwrite', default=False, action="store_true") # whether overwrite the existing results
args = parser.parse_args()
abs_path = os.path.dirname(os.path.abspath(__file__))
cfg_file = os.path.join(abs_path, args.cfg_file)
model_weights = args.brivl_checkpoint
vf_extractor = ImgFeatureExtractor(cfg_file, model_weights)
bbx_extr = BboxExtractor(os.path.join(abs_path, args.bbox_extractor_cfg))
if os.path.isdir(args.src_path):
for root, _, file_list in os.walk(args.src_path):
file_list.sort()
if '周杰伦mv' in root:
continue
for file in file_list:
print('processing: ', file)
try:
video_path = os.path.join(root, file)
save_path = os.path.join(args.dst_path, root[len(args.src_path) + 1:])
map_path = os.path.join(args.map_path, root[len(args.src_path) + 1:])
main(video_path, save_path, map_path, vf_extractor, bbx_extr)
except Exception as e:
traceback.print_exc()
else:
main(args.src_path, args.dst_path, args.map_path, vf_extractor, bbx_extr)
|