File size: 17,958 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import torch
import torch.nn as nn
from .fakeTransformer import FakeTransformer
from .bert import Bert
from ..utils import pairLoss, alignmentLoss, attAlignmentLoss, AlignTripLoss, SimpTripLoss, NCELoss
import torch.nn.functional as F
import timm
import numpy as np
import sys

class ImgLearnableEncoder(nn.Module):
    def __init__(self, model_cfg):

        super(ImgLearnableEncoder, self).__init__()

        self.backbone = timm.create_model(model_cfg.CNN, pretrained=True)
        self.model_cfg = model_cfg

        self.learnable = nn.ModuleDict()
        self.learnable['imgFC'] = FakeTransformer(model_cfg.IMG_FEATURE_DIM, model_cfg.IMG_FEATURE_DIM, model_cfg.IMG_FEATURE_DIM)
        img_encoder_layer = nn.TransformerEncoderLayer(d_model=model_cfg.IMG_FEATURE_DIM, nhead=model_cfg.IMG_TRANSFORMER_HEAD)
        self.learnable['imgAtt'] = nn.TransformerEncoder(img_encoder_layer, num_layers=model_cfg.IMG_TRANSFORMER_LAYER)

        self.learnable['max_pool'] = nn.Sequential(
                                                    nn.Conv2d(model_cfg.IMG_FEATURE_DIM, model_cfg.IMG_FEATURE_DIM, kernel_size=1),
                                                    nn.AvgPool2d(model_cfg.GRID_SIZE, stride=1)
                                                ) 

        self.init_param()

    def init_param(self):

        for name, param in self.backbone.named_parameters():
            # print('@@@@@@@@@@@@@@@@@@@@@@@')

            condition = 'blocks.6' not in name and 'blocks.5' not in name and 'blocks.4' not in name and 'blocks.3' not in name
            
            if condition:
                param.requires_grad = False
            else:
#                 print(name + ' need grads')
                param.requires_grad = True
        sys.stdout.flush()
            
        

    def roi_grid_pool(self, spatial_features_2d, rois):
        """
        Args:
            rois: (B, num_rois, 4)
            spatial_features_2d: (B, C, H, W)
        Returns:
            pooled_features : (B, num_rois, C)

        """
        batch_size = spatial_features_2d.size(0)
        rois = rois.detach()
        height, width = spatial_features_2d.size(2), spatial_features_2d.size(3) # 特征图的长宽

        #print(spatial_features_2d.size())
        down_sample_ratio = self.model_cfg.IMG_SIZE / height

        pooled_features_list = []
        torch.backends.cudnn.enabled = False
        for b_id in range(batch_size):
            # todo 这里有一个坐标系的转换需要做
            # Map global boxes coordinates to feature map coordinates
            x1 = rois[b_id, :, 0] / down_sample_ratio
            y1 = rois[b_id, :, 1] / down_sample_ratio
            x2 = rois[b_id, :, 2] / down_sample_ratio
            y2 = rois[b_id, :, 3] / down_sample_ratio
            #print(x1, y1, x2, y2)

            angle = torch.zeros((1), device=spatial_features_2d.device)  ##########

            cosa = torch.cos(angle)
            sina = torch.sin(angle)

            theta = torch.stack((
                (x2 - x1) / (width - 1) * cosa, (x2 - x1) / (width - 1) * (-sina), (x1 + x2 - width + 1) / (width - 1),
                (y2 - y1) / (height - 1) * sina, (y2 - y1) / (height - 1) * cosa, (y1 + y2 - height + 1) / (height - 1)
            ), dim=1).view(-1, 2, 3).float()

            grid_size = self.model_cfg.GRID_SIZE
            grid = nn.functional.affine_grid(
                theta,
                torch.Size((rois.size(1), spatial_features_2d.size(1), grid_size, grid_size))
            )

            pooled_features = nn.functional.grid_sample(
                spatial_features_2d[b_id].unsqueeze(0).expand(rois.size(1), spatial_features_2d.size(1), height, width),
                grid
            )
            pooled_features = self.learnable['max_pool'](pooled_features)
            pooled_features_list.append(pooled_features.squeeze())

        torch.backends.cudnn.enabled = True
        pooled_features = torch.stack(pooled_features_list, dim=0)

        return pooled_features

    def forward(self, imgFea, maskImages, image_boxs):

        feature_map = self.backbone.forward_features(imgFea)
        imgFea = self.roi_grid_pool(feature_map, image_boxs)

        imgFea = F.normalize(imgFea, p=2, dim=-1)
        imgFea = self.learnable['imgAtt'](imgFea.transpose(0, 1), src_key_padding_mask=(maskImages == 0)).transpose(0,1)

        tmpMask = torch.where(maskImages == 1, torch.tensor([1.0], device=maskImages.device),
                              torch.tensor([0.0], device=maskImages.device))
        imgFea = (imgFea * tmpMask.unsqueeze(-1)).sum(dim=1) / tmpMask.sum(dim=1).unsqueeze(-1)  # (bs, dim)

        imgFea = self.learnable['imgFC'](imgFea)
        return imgFea


class TextLearnableEncoder(nn.Module):
    def __init__(self, model_cfg):
        super(TextLearnableEncoder, self).__init__()

        self.backbone = Bert(model_cfg)
        self.model_cfg = model_cfg

        self.learnable = nn.ModuleDict()
        self.learnable['textFC'] = FakeTransformer(model_cfg.TEXT_FEATURE_DIM, model_cfg.IMG_FEATURE_DIM, model_cfg.IMG_FEATURE_DIM)
        text_encoder_layer = nn.TransformerEncoderLayer(d_model=model_cfg.TEXT_FEATURE_DIM, nhead=model_cfg.TEXT_TRANSFORMER_HEAD)
        self.learnable['textAtt'] = nn.TransformerEncoder(text_encoder_layer, num_layers=model_cfg.TEXT_TRANSFORMER_LAYER)

        self.init_param()

    def init_param(self):
        #print('!!!!!!!!!!!!!!!!')
        for name, param in self.backbone.named_parameters():
            #print(name)
            if 'large' not in self.model_cfg.ENCODER:

                if 'layer.11' not in name and 'layer.10' not in name and 'layer.9' not in name and 'layer.8' not in name:
                    param.requires_grad = False
                else:
                    #print('????????')
#                     print(name + ' need grads')
                    param.requires_grad = True
            else:
                if 'layer.21' not in name and 'layer.22' not in name and 'layer.23' not in name and 'layer.20' not in name: #  and 'layer.9' not in name
                    param.requires_grad = False
                else:
                    #print('????????')
#                     print(name + ' need grads')
                    param.requires_grad = True
        sys.stdout.flush()
        

    def forward(self, textFea, maskTexts):

        textFea = self.backbone(textFea)

        textFea = F.normalize(textFea, p=2, dim=-1)
        # print(textFea.shape) # torch.Size([75, 80, 1024])
        # print(maskTexts.shape)
        # print(1)
        textFea = self.learnable['textAtt'](textFea.transpose(0, 1), src_key_padding_mask=(maskTexts == 0)).transpose(0,1)
        # print(textFea.shape) # torch.Size([75, 80, 1024])
        # print(2)
        tmpMask = torch.where(maskTexts == 1, torch.tensor([1.0], device=maskTexts.device),
                              torch.tensor([0.0], device=maskTexts.device))
        textFea = (textFea * tmpMask.unsqueeze(-1)).sum(dim=1) / tmpMask.sum(dim=1).unsqueeze(-1)  # (bs, dim)
        # print(textFea.shape) # torch.Size([75, 80, 1024])
        # print(3)
        textFea = self.learnable['textFC'](textFea)
        # print(textFea.shape) # torch.Size([75, 80, 1024])
        # print(4)
        return textFea



class VL_model(nn.Module):

    def __init__(self, model_cfg):
        super(VL_model, self).__init__()

        self.model_cfg = model_cfg

        self.learnable = nn.ModuleDict()
        self.learnable['imgencoder'] = ImgLearnableEncoder(model_cfg)
        self.learnable['imgencoder_mom'] = ImgLearnableEncoder(model_cfg)
        self.learnable['textencoder'] = TextLearnableEncoder(model_cfg)
        self.learnable['textencoder_mom'] = TextLearnableEncoder(model_cfg)
        #self.generator = Generator(model_cfg)

        ############ add new params in .yml config file
        self.K = model_cfg.QUEUE_SIZE    # 6400
        self.m = model_cfg.MOMENTUM      # 0.9
        self.T = model_cfg.TEMPERATURE   # 0.07
        self.topk = model_cfg.TOPK       # 5
        self.multi_label = False
        ############ add new params in .yml config file

        # init the parameter of two models
        self.init_param() 
        # create the img queue 
        self.register_buffer("img_queue", torch.randn(model_cfg.IMG_FEATURE_DIM, self.K))
        self.img_queue = nn.functional.normalize(self.img_queue, dim=0)
        self.register_buffer("img_queue_ptr", torch.zeros(1, dtype=torch.long)) # image queue points
        # create the text queue
        self.register_buffer("text_queue", torch.randn(model_cfg.IMG_FEATURE_DIM, self.K))
        self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
        self.register_buffer("text_queue_ptr", torch.zeros(1, dtype=torch.long)) # text queue points


    def init_param(self):

        for param_q, param_k in zip(self.learnable['imgencoder'].parameters(), self.learnable['imgencoder_mom'].parameters()):
            param_k.data.copy_(param_q.data)  # initialize
            param_k.requires_grad = False  # not update by gradient

        for param_q, param_k in zip(self.learnable['textencoder'].parameters(), self.learnable['textencoder_mom'].parameters()):
            param_k.data.copy_(param_q.data)  # initialize
            param_k.requires_grad = False  # not update by gradient


    @torch.no_grad()
    def _momentum_update_key_encoder(self):
        """
        Momentum update of the key encoder for image modal
        """
        for param_q, param_k in zip(self.learnable['imgencoder'].parameters(), self.learnable['imgencoder_mom'].parameters()):
            param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
        for param_q, param_k in zip(self.learnable['textencoder'].parameters(), self.learnable['textencoder_mom'].parameters()):
            param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)

    @torch.no_grad()
    def _dequeue_and_enqueue(self, keys, option='img'):
        # option in 
        # gather keys before updating queue
        keys = concat_all_gather(keys)

        batch_size = keys.shape[0]

        if option == 'img':
            ptr = int(self.img_queue_ptr)
            assert self.K % batch_size == 0  # for simplicity

            # replace the keys at ptr (dequeue and enqueue)
            self.img_queue[:, ptr:ptr + batch_size] = keys.T
            ptr = (ptr + batch_size) % self.K  # move pointer

            self.img_queue_ptr[0] = ptr

        else:

            ptr = int(self.text_queue_ptr)
            assert self.K % batch_size == 0  # for simplicity

            # replace the keys at ptr (dequeue and enqueue)
            self.text_queue[:, ptr:ptr + batch_size] = keys.T
            ptr = (ptr + batch_size) % self.K  # move pointer

            self.text_queue_ptr[0] = ptr


    @torch.no_grad()
    def _batch_shuffle_ddp(self, x, x_mask):
        """
        Batch shuffle, for making use of BatchNorm.
        *** Only support DistributedDataParallel (DDP) model. ***
        """
        # gather from all gpus
        batch_size_this = x.shape[0]
        x_gather = concat_all_gather(x)
        x_mask_gather = concat_all_gather(x_mask)
        batch_size_all = x_gather.shape[0]

        num_gpus = batch_size_all // batch_size_this

        # random shuffle index
        idx_shuffle = torch.randperm(batch_size_all).cuda()

        # broadcast to all gpus
        torch.distributed.broadcast(idx_shuffle, src=0)

        # index for restoring
        idx_unshuffle = torch.argsort(idx_shuffle)

        # shuffled index for this gpu
        gpu_idx = torch.distributed.get_rank()
        idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx]

        return x_gather[idx_this], x_mask_gather[idx_this], idx_unshuffle

    @torch.no_grad()
    def _batch_unshuffle_ddp(self, x, x_mask, idx_unshuffle):
        """
        Undo batch shuffle.
        *** Only support DistributedDataParallel (DDP) model. ***
        """
        # gather from all gpus
        batch_size_this = x.shape[0]
        x_gather = concat_all_gather(x)
        x_mask_gather = concat_all_gather(x_mask)
        batch_size_all = x_gather.shape[0]

        num_gpus = batch_size_all // batch_size_this

        # restored index for this gpu
        gpu_idx = torch.distributed.get_rank()
        idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx]

        return x_gather[idx_this], x_mask_gather[idx_this]


    def forward(self, imgFea, texts, maskImages, maskTexts, text_lens, image_boxs, is_training=True):

        if self.model_cfg.IS_EXTRACT:
            return self.extract(imgFea, texts, maskImages, maskTexts, image_boxs)

        batch_size = imgFea.size(0)

        imgFea_q = self.learnable['imgencoder'](imgFea, maskImages, image_boxs) # <bsz, img_dim>
        imgFea_q = F.normalize(imgFea_q, p=2, dim=-1)
        textFea_q = self.learnable['textencoder'](texts, maskTexts) # <bsz, img_dim>
        textFea_q = F.normalize(textFea_q, p=2, dim=-1)
        
        # compute key features
        with torch.no_grad():  # no gradient to keys
            self._momentum_update_key_encoder()  # update the key encoder

            # shuffle for making use of BN
            imgFea, image_boxs, idx_unshuffle = self._batch_shuffle_ddp(imgFea, image_boxs)

            imgFea_k = self.learnable['imgencoder_mom'](imgFea, maskImages, image_boxs) # <bsz, img_dim>
            imgFea_k = F.normalize(imgFea_k, p=2, dim=-1)

            # undo shuffle
            imgFea_k, image_boxs = self._batch_unshuffle_ddp(imgFea_k, image_boxs, idx_unshuffle)

            # shuffle for making use of BN
            texts, maskTexts, idx_unshuffle = self._batch_shuffle_ddp(texts, maskTexts)

            textFea_k = self.learnable['textencoder_mom'](texts, maskTexts) # <bsz, img_dim>
            textFea_k = F.normalize(textFea_k, p=2, dim=-1)

            # undo shuffle
            textFea_k, maskTexts = self._batch_unshuffle_ddp(textFea_k, maskTexts, idx_unshuffle)


        # compute logits for image -> text
        # positive logits: Nx1
        i2t_l_pos = torch.einsum('nc,nc->n', [imgFea_q, textFea_k]).unsqueeze(-1)
        # negative logits: NxK
        i2t_l_neg = torch.einsum('nc,ck->nk', [imgFea_q, self.text_queue.clone().detach()])

        # logits: Nx(1+K)
        i2t_logits = torch.cat([i2t_l_pos, i2t_l_neg], dim=-1)
        i2t_logits /= self.T

        # compute logits for text -> image
        # positive logits: Nx1
        t2i_l_pos = torch.einsum('nc,nc->n', [textFea_q, imgFea_k]).unsqueeze(-1)
        # negative logits: NxK
        t2i_l_neg = torch.einsum('nc,ck->nk', [textFea_q, self.img_queue.clone().detach()])

        # logits: Nx(1+K)
        t2i_logits = torch.cat([t2i_l_pos, t2i_l_neg], dim=-1)
        t2i_logits /= self.T


        ### multi-label
        mask = torch.zeros((batch_size, self.K)).bool().cuda()                                # <B, K>

        if self.multi_label:
            mask_sim_txt = textFea_k.matmul(self.text_queue.clone().detach()) # <B, dim>  <dim, K> -> <B, K>
            mask_sim_img = imgFea_k.matmul(self.img_queue.clone().detach())

            _, topkidx_txt = torch.topk(mask_sim_txt, self.topk, dim=1)             # <B, topk>
            _, topkidx_img = torch.topk(mask_sim_img, self.topk, dim=1)             # <B, topk>
            topk_onehot_txt = torch.zeros_like(mask_sim_txt)            # <B, K>
            topk_onehot_txt.scatter_(1, topkidx_txt, 1)                 # one hot vector
            topk_onehot_img = torch.zeros_like(mask_sim_img)            # <B, K> 
            topk_onehot_img.scatter_(1, topkidx_img, 1)                 # one hot vector

            mask[topk_onehot_txt.bool() & topk_onehot_img.bool()] = True # <B, K>


        mask = torch.cat([torch.ones((batch_size, 1), dtype=torch.long, device=mask.device).bool(),
                          mask], dim=1)                                                                  # <B, K+1>

        ### multi-label
        t2i_loss = -1 * F.log_softmax(t2i_logits, dim=1)                                    # <B, 1+K>
        t2i_loss = torch.masked_select(t2i_loss, mask).sum() / batch_size              # masked_select return 1-d tensor
        i2t_loss = -1 * F.log_softmax(i2t_logits, dim=1)
        i2t_loss = torch.masked_select(i2t_loss, mask).sum() / batch_size              # masked_select return 1-d tensor

        loss = t2i_loss + i2t_loss

        ## enqueue and dequeue
        self._dequeue_and_enqueue(imgFea_k, option='img')
        self._dequeue_and_enqueue(textFea_k, option='text')

        # ----------caption-------------
        # TODO: update
        '''
        if is_training:
            caption = None
            caption_loss = self.generator(imgFea_q, texts, text_lens, maskTexts, is_training)
        else:
            caption_loss, caption = self.generator(imgFea_q, texts, text_lens, maskTexts, is_training)
        '''

        return loss#, caption_loss, caption


    def extract(self, imgFea, texts, maskImages, maskTexts, image_boxs):


        imgFea = self.learnable['imgencoder'](imgFea, maskImages, image_boxs) # <bsz, img_dim>
        textFea = self.learnable['textencoder'](texts, maskTexts) # <bsz, img_dim>
        
        imgFea = F.normalize(imgFea, p=2, dim=-1)
        textFea = F.normalize(textFea, p=2, dim=-1)

        retrieval_feat_group = {}

        retrieval_feat_group['img_text'] = (imgFea, textFea)

        return retrieval_feat_group


# utils
@torch.no_grad()
def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [torch.ones_like(tensor)
        for _ in range(torch.distributed.get_world_size())]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output