Spaces:
No application file
No application file
| import os | |
| import time | |
| from typing import Literal, Union, List, Tuple | |
| from tqdm import tqdm | |
| from PIL import Image | |
| from transformers import ( | |
| CLIPVisionModelWithProjection, | |
| CLIPImageProcessor, | |
| ) | |
| import h5py | |
| import torch | |
| import numpy as np | |
| from ...data.extract_feature.base_extract_feature import BaseFeatureExtractor | |
| from ...data.emb.h5py_emb import save_value_with_h5py | |
| from ..process.image_process import dynamic_crop_resize_image | |
| from ..utils.data_type_util import convert_images | |
| from .clip_vision_extractor import ImageClipVisionFeatureExtractorV2 | |
| class InsightFaceExtractor(BaseFeatureExtractor): | |
| """选择clip的image_embeds,一张图像的输出特征是N,根据模型的选择可能是512、768、1024 | |
| Args: | |
| BaseFeatureExtractor (_type_): _description_ | |
| """ | |
| def __init__( | |
| self, | |
| pretrained_model_name_or_path: str, | |
| name: str = None, | |
| device: str = "cpu", | |
| dtype=torch.float32, | |
| model_name: str = "buffalo_l", | |
| allowed_modules: List[str] = ["detection", "recognition"], | |
| providers: List[str] = ["CUDAExecutionProvider", "CPUExecutionProvider"], | |
| need_align_face: bool = False, | |
| ): | |
| from insightface.app import FaceAnalysis | |
| super().__init__(device, dtype, name) | |
| self.pretrained_model_name_or_path = pretrained_model_name_or_path | |
| self.extractor = FaceAnalysis( | |
| name=model_name, | |
| root=pretrained_model_name_or_path, | |
| allowed_modules=allowed_modules, | |
| providers=providers, | |
| ) | |
| self.extractor.prepare(ctx_id=0, det_size=(640, 640)) | |
| self.need_align_face = need_align_face | |
| def extract_images( | |
| self, | |
| data: Union[str, List[str], Image.Image, List[Image.Image], np.ndarray], | |
| target_width: int = None, | |
| target_height: int = None, | |
| return_type: str = "numpy", | |
| input_rgb_order: str = "rgb", | |
| ) -> Union[np.ndarray, torch.Tensor]: | |
| data = convert_images( | |
| data, | |
| return_type="pil", | |
| input_rgb_order=input_rgb_order, | |
| return_rgb_order="bgr", | |
| ) | |
| if target_height is not None and target_width is not None: | |
| data = [ | |
| dynamic_crop_resize_image( | |
| image, | |
| target_height=target_height, | |
| target_width=target_width, | |
| ) | |
| for image in data | |
| ] | |
| data = [np.array(x.convert("RGB"))[:, :, ::-1] for x in data] | |
| with torch.no_grad(): | |
| faces = [self.extractor.get(x) for x in data] | |
| emb = [self.get_target_emb(x) for x in faces] | |
| if self.need_align_face: | |
| from insightface.utils import face_align | |
| align_face_image = [ | |
| face_align.norm_crop(x, landmark=faces[i][0].kps, image_size=224) | |
| for i, x in enumerate(data) | |
| ] | |
| else: | |
| align_face_image = None | |
| emb = np.concatenate(np.expand_dims(emb, axis=0), axis=0) | |
| if return_type == "torch": | |
| emb = torch.from_numpy(emb).to(device=self.device) | |
| return emb, align_face_image | |
| def get_target_emb(self, data): | |
| outputs = data[0]["embedding"] | |
| return outputs | |
| def extract_video( | |
| self, | |
| video_dataset, | |
| target_width: int = None, | |
| target_height: int = None, | |
| return_type: str = "numpy", | |
| track_performance: bool = False, | |
| input_rgb_order: str = "rgb", | |
| ) -> Union[np.ndarray, torch.Tensor]: | |
| embs = [] | |
| sample_indexs = [] | |
| if track_performance: | |
| performance = {} | |
| if self.need_align_face: | |
| align_face_images = [] | |
| else: | |
| align_face_images = None | |
| with torch.no_grad(): | |
| for i, (batch, batch_index) in enumerate(video_dataset): | |
| # TODO: 现阶段复用hugging face diffusers img2img pipeline中的抽取代码, | |
| # 由于该代码目前只支持Image的预处理,故先将numpy.ndarray转换成PIL.Image | |
| batch = [Image.fromarray(batch[b_i]) for b_i in range(len(batch))] | |
| emb, align_face_image = self.extract_images( | |
| data=batch, | |
| target_width=target_width, | |
| target_height=target_height, | |
| return_type=return_type, | |
| input_rgb_order=input_rgb_order, | |
| ) | |
| embs.append(emb) | |
| sample_indexs.extend(batch_index) | |
| if self.need_align_face: | |
| align_face_images.append(align_face_image) | |
| sample_indexs = np.array(sample_indexs) | |
| if return_type == "numpy": | |
| embs = np.concatenate(embs, axis=0) | |
| elif return_type == "torch": | |
| embs = torch.concat(embs) | |
| sample_indexs = torch.from_numpy(sample_indexs) | |
| return sample_indexs, embs, align_face_images | |
| def extract( | |
| self, | |
| data: Union[str, List[str]], | |
| data_type: Literal["image", "video"], | |
| return_type: str = "numpy", | |
| save_emb_path: str = None, | |
| save_type: str = "h5py", | |
| emb_key: str = "image_embeds", | |
| sample_index_key: str = "sample_indexs", | |
| insert_name_to_key: bool = False, | |
| overwrite: bool = False, | |
| input_rgb_order: str = "rgb", | |
| save_sample_index: bool = True, | |
| **kwargs, | |
| ) -> Union[np.ndarray, torch.tensor]: | |
| if self.name is not None and insert_name_to_key: | |
| emb_key = f"{self.name}_{emb_key}" | |
| sample_index_key = f"{self.name}_{sample_index_key}" | |
| if save_emb_path is not None and os.path.exists(save_emb_path): | |
| with h5py.File(save_emb_path, "r") as f: | |
| if not overwrite and emb_key in f and sample_index_key in f: | |
| return None | |
| if data_type == "image": | |
| emb = self.extract_images( | |
| data=data, | |
| return_type=return_type, | |
| input_rgb_order=input_rgb_order, | |
| **kwargs, | |
| ) | |
| if save_emb_path is None: | |
| return emb | |
| else: | |
| raise NotImplementedError("save images emb") | |
| elif data_type == "video": | |
| sample_indexs, emb = self.extract_video( | |
| video_dataset=data, | |
| return_type=return_type, | |
| input_rgb_order=input_rgb_order, | |
| **kwargs, | |
| ) | |
| if save_emb_path is None: | |
| return sample_indexs, emb | |
| else: | |
| if save_type == "h5py": | |
| self.save_video_emb_with_h5py( | |
| save_emb_path=save_emb_path, | |
| emb=emb, | |
| emb_key=emb_key, | |
| sample_indexs=sample_indexs, | |
| sample_index_key=sample_index_key, | |
| overwrite=overwrite, | |
| save_sample_index=save_sample_index, | |
| ) | |
| return sample_indexs, emb | |
| else: | |
| raise ValueError(f"only support save_type={save_type}") | |
| def save_images_emb_with_h5py( | |
| save_emb_path: str, | |
| emb: np.ndarray = None, | |
| emb_key: str = "image_embeds", | |
| ) -> h5py.File: | |
| save_value_with_h5py(save_emb_path, value=emb, key=emb_key) | |
| def save_video_emb_with_h5py( | |
| save_emb_path: str, | |
| emb: np.ndarray = None, | |
| emb_key: str = "image_embeds", | |
| sample_indexs: np.ndarray = None, | |
| sample_index_key: str = "sample_indexs", | |
| overwrite: bool = False, | |
| save_sample_index: bool = True, | |
| ) -> h5py.File: | |
| save_value_with_h5py( | |
| save_emb_path, | |
| value=emb, | |
| key=emb_key, | |
| overwrite=overwrite, | |
| dtype=np.float16, | |
| ) | |
| if save_sample_index: | |
| save_value_with_h5py( | |
| save_emb_path, | |
| value=sample_indexs, | |
| key=sample_index_key, | |
| overwrite=overwrite, | |
| dtype=np.uint32, | |
| ) | |
| class InsightFaceExtractorNormEmb(InsightFaceExtractor): | |
| def __init__( | |
| self, | |
| pretrained_model_name_or_path: str, | |
| name: str = None, | |
| device: str = "cpu", | |
| dtype=torch.float32, | |
| model_name: str = "buffalo_l", | |
| allowed_modules: List[str] = ["detection", "recognition"], | |
| providers: List[str] = ["CUDAExecutionProvider", "CPUExecutionProvider"], | |
| ): | |
| super().__init__( | |
| pretrained_model_name_or_path, | |
| name, | |
| device, | |
| dtype, | |
| model_name, | |
| allowed_modules, | |
| providers, | |
| ) | |
| def get_target_emb(self, data): | |
| outputs = data[0].normed_embedding | |
| return outputs | |