File size: 6,619 Bytes
17677b9
8729231
 
17677b9
 
 
 
 
 
 
447031b
 
8729231
 
 
 
cfc31df
 
 
 
 
c064b42
c7856a0
 
c064b42
8729231
17677b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447031b
 
 
 
17677b9
 
 
447031b
17677b9
447031b
17677b9
 
447031b
 
17677b9
cfc31df
 
 
 
 
 
 
 
 
 
447031b
 
17677b9
98d9023
 
 
 
 
 
 
 
 
cfc31df
98d9023
 
 
 
 
 
 
 
 
 
 
cfc31df
 
98d9023
cfc31df
98d9023
 
cfc31df
98d9023
17677b9
 
c7d39c8
98d9023
c7d39c8
98d9023
c7d39c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d9023
447031b
76c9645
 
 
cfc31df
447031b
 
 
cfc31df
 
 
447031b
 
17677b9
8b225ac
17677b9
8b225ac
17677b9
 
5082c6a
 
 
17677b9
 
 
 
447031b
 
 
 
 
 
 
 
17677b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import subprocess
import random
import os
from pathlib import Path
import librosa
from scipy.io import wavfile
import numpy as np
import torch
import csv
import whisper
import gradio as gr

os.system("pip install --upgrade Cython==0.29.35")
os.system("pip install pysptk --no-build-isolation")
os.system("pip install kantts -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html")
os.system("pip install tts-autolabel -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html")
os.system("apt-get install sox")

os.system("git clone https://github.com/fbcotter/pytorch_wavelets")
os.system("cd pytorch_wavelets")
os.system("pip install .")

os.system("pip install modelscope==1.8.4")

import sox

def split_long_audio(model, filepaths, save_dir="data_dir", out_sr=44100):
    if isinstance(filepaths, str):
        filepaths = [filepaths]

    for file_idx, filepath in enumerate(filepaths):

        save_path = Path(save_dir)
        save_path.mkdir(exist_ok=True, parents=True)

        print(f"Transcribing file {file_idx}: '{filepath}' to segments...")
        result = model.transcribe(filepath, word_timestamps=True, task="transcribe", beam_size=5, best_of=5)
        segments = result['segments']

        wav, sr = librosa.load(filepath, sr=None, offset=0, duration=None, mono=True)
        wav, _ = librosa.effects.trim(wav, top_db=20)
        peak = np.abs(wav).max()
        if peak > 1.0:
            wav = 0.98 * wav / peak
        wav2 = librosa.resample(wav, orig_sr=sr, target_sr=out_sr)
        wav2 /= max(wav2.max(), -wav2.min())

        for i, seg in enumerate(segments):
            start_time = seg['start']
            end_time = seg['end']
            wav_seg = wav2[int(start_time * out_sr):int(end_time * out_sr)]
            wav_seg_name = f"{file_idx}_{i}.wav"
            out_fpath = save_path / wav_seg_name
            wavfile.write(out_fpath, rate=out_sr, data=(wav_seg * np.iinfo(np.int16).max).astype(np.int16))

whisper_size = "medium"
whisper_model = whisper.load_model(whisper_size)

from modelscope.tools import run_auto_label

from modelscope.models.audio.tts import SambertHifigan
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.utils.audio.audio_utils import TtsTrainType

pretrained_model_id = 'damo/speech_personal_sambert-hifigan_nsf_tts_zh-cn_pretrain_16k'

dataset_id = "./output_training_data/"
pretrain_work_dir = "./pretrain_work_dir/"


def auto_label(audio):
    try:
        split_long_audio(whisper_model, audio, "test_wavs")
        os.makedirs("output_training_data", exist_ok=True)
        input_wav = "./test_wavs/"
        output_data = "./output_training_data/"
        ret, report = run_auto_label(input_wav=input_wav, work_dir=output_data, resource_revision="v1.0.7")
    
    except Exception:
        pass
    return "标注成功"


def train(a):
    try:
        os.makedirs("pretrain_work_dir", exist_ok=True)

        train_info = {
            TtsTrainType.TRAIN_TYPE_SAMBERT: {  # 配置训练AM(sambert)模型
                'train_steps': 52,               # 训练多少个step
                'save_interval_steps': 50,       # 每训练多少个step保存一次checkpoint
                'log_interval': 10               # 每训练多少个step打印一次训练日志
            }
        }

        # 配置训练参数,指定数据集,临时工作目录和train_info
        kwargs = dict(
            model=pretrained_model_id,                  # 指定要finetune的模型
            model_revision = "v1.0.6",
            work_dir=pretrain_work_dir,                 # 指定临时工作目录
            train_dataset=dataset_id,                   # 指定数据集id
            train_type=train_info                       # 指定要训练类型及参数
        )

        trainer = build_trainer(Trainers.speech_kantts_trainer,
                            default_args=kwargs)

        trainer.train()

    except Exception:
        pass
      
    return "训练完成"


import random

def infer(text):

  model_dir = os.path.abspath("./pretrain_work_dir")

  custom_infer_abs = {
      'voice_name':
      'F7',
      'am_ckpt':
      os.path.join(model_dir, 'tmp_am', 'ckpt'),
      'am_config':
      os.path.join(model_dir, 'tmp_am', 'config.yaml'),
      'voc_ckpt':
      os.path.join(model_dir, 'orig_model', 'basemodel_16k', 'hifigan', 'ckpt'),
      'voc_config':
      os.path.join(model_dir, 'orig_model', 'basemodel_16k', 'hifigan',
              'config.yaml'),
      'audio_config':
      os.path.join(model_dir, 'data', 'audio_config.yaml'),
      'se_file':
      os.path.join(model_dir, 'data', 'se', 'se.npy')
  }
  kwargs = {'custom_ckpt': custom_infer_abs}

  model_id = SambertHifigan(os.path.join(model_dir, "orig_model"), **kwargs)

  inference = pipeline(task=Tasks.text_to_speech, model=model_id)
  output = inference(input=text)

  filename = str(random.randint(1, 1000000000000))

  with open(filename + "myfile.wav", mode='bx') as f:
      f.write(output["output_wav"])
  return filename + "myfile.wav"


#auto_label("nana_speech.wav")
#train("test")
#infer("测试一下")

app = gr.Blocks()

with app:
    gr.Markdown("# <center>🥳🎶🎡 - Sambert中文声音克隆</center>")
    gr.Markdown("## <center>🌟 - 训练3分钟,推理5秒钟,中英自然发音 </center>")
    gr.Markdown("### <center>🌊 - 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")

    with gr.Row():
      inp1 = gr.Audio(type="filepath", label="请上传一段音频")
      out1 = gr.Textbox(label="标注情况", lines=1, interactive=False)

      out2 = gr.Textbox(label="训练情况", lines=1, interactive=False)
      inp2 = gr.Textbox(label="文本", lines=3)
      out3 = gr.Audio(type="filepath", label="合成的音频")
      btn1 = gr.Button("1.标注数据")
      btn2 = gr.Button("2.开始训练")
      btn3 = gr.Button("3.一键推理", variant="primary")

      btn1.click(auto_label, inp1, out1)
      btn2.click(train, out1, out2)
      btn3.click(infer, inp2, out3)

    gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>")
    gr.HTML('''
        <div class="footer">
                    <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                    </p>
        </div>
    ''')
app.launch(show_error=True)