Spaces:
Runtime error
Runtime error
File size: 5,310 Bytes
fb894d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
{
"cells": [
{
"cell_type": "markdown",
"source": [
"## MB-iSTFT-VITS2 inference"
],
"metadata": {
"id": "N0bhDfmXOBRy"
}
},
{
"cell_type": "code",
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import IPython.display as ipd\n",
"import librosa\n",
"\n",
"import os\n",
"import json\n",
"import math\n",
"\n",
"import requests\n",
"import torch\n",
"from torch import nn\n",
"from torch.nn import functional as F\n",
"from torch.utils.data import DataLoader\n",
"\n",
"import commons\n",
"import utils\n",
"from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
"from models import SynthesizerTrn\n",
"from text.symbols import symbols\n",
"from text import text_to_sequence\n",
"import langdetect\n",
"\n",
"from scipy.io.wavfile import write\n",
"import re"
],
"metadata": {
"id": "2GppsfIWTo7m"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def get_text(text, hps):\n",
" text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
" if hps.data.add_blank:\n",
" text_norm = commons.intersperse(text_norm, 0)\n",
" text_norm = torch.LongTensor(text_norm)\n",
" return text_norm\n",
"\n",
"\n",
"def langdetector(text): # from PolyLangVITS\n",
" try:\n",
" lang = langdetect.detect(text).lower()\n",
" if lang == 'ko':\n",
" return f'[KO]{text}[KO]'\n",
" elif lang == 'ja':\n",
" return f'[JA]{text}[JA]'\n",
" elif lang == 'en':\n",
" return f'[EN]{text}[EN]'\n",
" elif lang == 'zh-cn':\n",
" return f'[ZH]{text}[ZH]'\n",
" else:\n",
" return text\n",
" except Exception as e:\n",
" return text\n",
"\n",
"\n",
"def vcss(inputstr):\n",
" fltstr = re.sub(r\"[\\[\\]\\(\\)\\{\\}]\", \"\", inputstr)\n",
" fltstr = langdetector(fltstr)\n",
" stn_tst = get_text(fltstr, hps)\n",
"\n",
" speed = 1\n",
" sid = 0\n",
" output_dir = 'output'\n",
" with torch.no_grad():\n",
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
" audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1 / speed)[0][\n",
" 0, 0].data.cpu().float().numpy()\n",
"\n",
" ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
],
"metadata": {
"id": "v85aPkPtOA3m"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"hps = utils.get_hparams_from_file(\"./configs/mini_mb_istft_vits2_base.json\")\n",
"\n",
"if \"use_mel_posterior_encoder\" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:\n",
" print(\"Using mel posterior encoder for VITS2\")\n",
" posterior_channels = 80 # vits2\n",
" hps.data.use_mel_posterior_encoder = True\n",
"else:\n",
" print(\"Using lin posterior encoder for VITS1\")\n",
" posterior_channels = hps.data.filter_length // 2 + 1\n",
" hps.data.use_mel_posterior_encoder = False\n",
"\n",
"net_g = SynthesizerTrn(\n",
" len(symbols),\n",
" posterior_channels,\n",
" hps.train.segment_size // hps.data.hop_length,\n",
" **hps.model).cuda()\n",
"_ = net_g.eval()\n",
"\n",
"_ = utils.load_checkpoint(\"./models/G_2000.pth\", net_g, None)"
],
"metadata": {
"id": "S6J9zwzrTvBX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# - text input\n",
"input = \"I try to get the waiter's attention by blinking in morse code\"\n",
"vcss(input)"
],
"metadata": {
"id": "T9nV74YBTx1h"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"display_name": "MB-VITS",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"vscode": {
"interpreter": {
"hash": "9f16a3c86bbbd14c7fe4bf55d76086aa28175c5396da58b2a4368fac2eb85de4"
}
},
"colab": {
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|