Spaces:
Runtime error
Runtime error
import argparse | |
import gradio as gr | |
from gradio import components | |
import os | |
import torch | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import text_to_sequence | |
from scipy.io.wavfile import write | |
def get_text(text, hps): | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def tts(model_path, config_path, text): | |
model_path = "./logs/G_23300.pth" | |
config_path = "./configs/config.json" | |
hps = utils.get_hparams_from_file(config_path) | |
if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True: | |
posterior_channels = 80 | |
hps.data.use_mel_posterior_encoder = True | |
else: | |
posterior_channels = hps.data.filter_length // 2 + 1 | |
hps.data.use_mel_posterior_encoder = False | |
net_g = SynthesizerTrn( | |
len(symbols), | |
posterior_channels, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).cuda() | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None) | |
stn_tst = get_text(text, hps) | |
x_tst = stn_tst.cuda().unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda() | |
with torch.no_grad(): | |
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() | |
output_wav_path = "output.wav" | |
write(output_wav_path, hps.data.sampling_rate, audio) | |
return output_wav_path | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model_path', type=str, default="./logs/G_23300.pth", help='Path to the model file.') | |
parser.add_argument('--config_path', type=str, default="./configs/config.json", help='Path to the config file.') | |
args = parser.parse_args() | |
model_files = [f for f in os.listdir('./logs/') if f.endswith('.pth')] | |
model_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]), reverse=True) | |
config_files = [f for f in os.listdir('./configs/') if f.endswith('.json')] | |
default_model_file = args.model_path if args.model_path else (model_files[0] if model_files else None) | |
default_config_file = args.config_path if args.config_path else 'config.json' | |
gr.Interface( | |
fn=tts, | |
inputs=components.Textbox(label="Text Input"), | |
outputs=components.Audio(type='filepath', label="Generated Speech"), | |
live=False | |
).launch(show_error=True) |