File size: 11,113 Bytes
f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea 8e24e05 f3d5bea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import torch
import numpy as np
import networkx as nx
from scipy.sparse.linalg import eigsh
from sklearn.cluster import SpectralClustering
import warnings
warnings.filterwarnings('ignore')
class GraphSequencer:
"""
Production-ready graph ordering strategies
Device-safe implementation with performance optimizations
"""
@staticmethod
def bfs_ordering(edge_index, num_nodes, start_node=None):
"""Breadth-first search ordering - optimized version"""
device = edge_index.device
if num_nodes <= 1:
return torch.arange(num_nodes, device=device)
# Convert to adjacency list efficiently
adj_list = [[] for _ in range(num_nodes)]
edge_list = edge_index.t().cpu().numpy()
for src, dst in edge_list:
if src < num_nodes and dst < num_nodes:
adj_list[src].append(dst)
adj_list[dst].append(src)
# Remove duplicates and sort for determinism
adj_list = [sorted(list(set(neighbors))) for neighbors in adj_list]
# Start from highest degree node if not specified
if start_node is None:
degrees = [len(neighbors) for neighbors in adj_list]
start_node = np.argmax(degrees) if degrees else 0
# BFS traversal
visited = set()
order = []
queue = [start_node]
while queue:
node = queue.pop(0)
if node in visited or node >= num_nodes:
continue
visited.add(node)
order.append(node)
# Add neighbors by degree (deterministic)
neighbors = adj_list[node]
neighbors.sort(key=lambda n: (len(adj_list[n]), n), reverse=True)
for neighbor in neighbors:
if neighbor not in visited:
queue.append(neighbor)
# Add any disconnected nodes
for node in range(num_nodes):
if node not in visited:
order.append(node)
return torch.tensor(order, dtype=torch.long, device=device)
@staticmethod
def spectral_ordering(edge_index, num_nodes):
"""Spectral ordering using graph Laplacian eigenvector - robust version"""
device = edge_index.device
if num_nodes <= 2:
return torch.arange(num_nodes, device=device)
try:
# Move to CPU for scipy operations
edge_index_cpu = edge_index.cpu().numpy()
# Create adjacency matrix
A = np.zeros((num_nodes, num_nodes))
valid_edges = (edge_index_cpu[0] < num_nodes) & (edge_index_cpu[1] < num_nodes)
valid_edge_index = edge_index_cpu[:, valid_edges]
A[valid_edge_index[0], valid_edge_index[1]] = 1
A[valid_edge_index[1], valid_edge_index[0]] = 1 # Undirected
# Degree matrix
degrees = np.sum(A, axis=1)
# Handle disconnected components
if np.any(degrees == 0):
# Add self-loops to isolated nodes
isolated = degrees == 0
A[isolated, isolated] = 1
degrees = np.sum(A, axis=1)
D = np.diag(degrees)
# Normalized Laplacian: L = D^(-1/2) * (D - A) * D^(-1/2)
degrees_sqrt_inv = np.where(degrees > 0, 1.0 / np.sqrt(degrees), 0)
D_sqrt_inv = np.diag(degrees_sqrt_inv)
L = D_sqrt_inv @ (D - A) @ D_sqrt_inv
# Compute eigenvectors
k = min(10, num_nodes - 1)
try:
eigenvals, eigenvecs = eigsh(L, k=k, which='SM', sigma=0.0)
# Use second smallest eigenvector (Fiedler vector)
if eigenvecs.shape[1] > 1:
fiedler_vector = eigenvecs[:, 1]
else:
fiedler_vector = eigenvecs[:, 0]
# Order by Fiedler vector values
order = np.argsort(fiedler_vector)
except Exception:
# Fallback to degree ordering
order = np.argsort(-degrees)
return torch.tensor(order, dtype=torch.long, device=device)
except Exception as e:
print(f"Spectral ordering failed: {e}, falling back to degree ordering")
return GraphSequencer.degree_ordering(edge_index, num_nodes)
@staticmethod
def degree_ordering(edge_index, num_nodes):
"""Order nodes by degree (high to low) - optimized version"""
device = edge_index.device
# Count degrees efficiently
degrees = torch.zeros(num_nodes, dtype=torch.long, device=device)
if edge_index.shape[1] > 0:
# Ensure valid indices
valid_mask = (edge_index[0] < num_nodes) & (edge_index[1] < num_nodes)
valid_edges = edge_index[:, valid_mask]
if valid_edges.shape[1] > 0:
degrees.index_add_(0, valid_edges[0], torch.ones(valid_edges.shape[1], dtype=torch.long, device=device))
degrees.index_add_(0, valid_edges[1], torch.ones(valid_edges.shape[1], dtype=torch.long, device=device))
# Sort by degree (descending), then by node index for determinism
node_indices = torch.arange(num_nodes, device=device)
_, order = torch.sort(-degrees * num_nodes - node_indices)
return order
@staticmethod
def community_ordering(edge_index, num_nodes, n_clusters=None):
"""Community-aware ordering - robust version"""
device = edge_index.device
if num_nodes <= 3:
return GraphSequencer.degree_ordering(edge_index, num_nodes)
try:
if n_clusters is None:
n_clusters = max(2, min(10, int(np.sqrt(num_nodes))))
n_clusters = min(n_clusters, num_nodes)
# Convert to adjacency matrix on CPU
edge_index_cpu = edge_index.cpu().numpy()
A = np.zeros((num_nodes, num_nodes))
valid_edges = (edge_index_cpu[0] < num_nodes) & (edge_index_cpu[1] < num_nodes)
valid_edge_index = edge_index_cpu[:, valid_edges]
if valid_edge_index.shape[1] > 0:
A[valid_edge_index[0], valid_edge_index[1]] = 1
A[valid_edge_index[1], valid_edge_index[0]] = 1
# Add small diagonal for stability
A += np.eye(num_nodes) * 0.01
# Spectral clustering
clustering = SpectralClustering(
n_clusters=n_clusters,
affinity='precomputed',
random_state=42,
assign_labels='discretize'
)
labels = clustering.fit_predict(A)
# Order by cluster, then by degree within cluster
degrees = np.sum(A, axis=1)
order = []
for cluster in range(n_clusters):
cluster_nodes = np.where(labels == cluster)[0]
if len(cluster_nodes) > 0:
cluster_degrees = degrees[cluster_nodes]
cluster_order = cluster_nodes[np.argsort(-cluster_degrees)]
order.extend(cluster_order)
# Add any missed nodes
for i in range(num_nodes):
if i not in order:
order.append(i)
return torch.tensor(order, dtype=torch.long, device=device)
except Exception as e:
print(f"Community ordering failed: {e}, falling back to BFS ordering")
return GraphSequencer.bfs_ordering(edge_index, num_nodes)
class PositionalEncoder:
"""Graph-aware positional encoding - optimized version"""
@staticmethod
def encode_positions(x, edge_index, order, max_dist=10):
"""
Create positional encodings that preserve graph structure
Optimized for training stability
"""
num_nodes = x.size(0)
device = x.device
# Sequential positions
seq_pos = torch.zeros(num_nodes, device=device)
seq_pos[order] = torch.arange(num_nodes, device=device, dtype=torch.float)
seq_pos = seq_pos / max(num_nodes, 1)
# Enhanced distance encoding
distances = torch.zeros((num_nodes, max_dist), device=device)
if edge_index.shape[1] > 0:
# Create adjacency matrix efficiently
adj = torch.zeros(num_nodes, num_nodes, device=device, dtype=torch.bool)
# Filter valid edges
valid_mask = (edge_index[0] < num_nodes) & (edge_index[1] < num_nodes)
if valid_mask.any():
valid_edges = edge_index[:, valid_mask]
adj[valid_edges[0], valid_edges[1]] = True
adj[valid_edges[1], valid_edges[0]] = True # Undirected
# Compute 2-hop neighbors for richer encoding
adj2 = torch.matmul(adj.float(), adj.float()) > 0
# Fill distance features
for i, node in enumerate(order):
node_idx = node.item() if isinstance(node, torch.Tensor) else node
if node_idx < num_nodes:
# Get 1-hop and 2-hop neighbors
neighbors_1hop = torch.where(adj[node_idx])[0]
neighbors_2hop = torch.where(adj2[node_idx] & ~adj[node_idx])[0]
# Fill distance features based on order position
start_idx = max(0, i - max_dist)
for j in range(start_idx, i):
if j - start_idx < max_dist:
prev_node = order[j]
prev_idx = prev_node.item() if isinstance(prev_node, torch.Tensor) else prev_node
if prev_idx < num_nodes:
# Multi-scale distance encoding
if prev_idx in neighbors_1hop:
distances[node_idx, j - start_idx] = 0.9 # Direct neighbor
elif prev_idx in neighbors_2hop:
distances[node_idx, j - start_idx] = 0.6 # 2-hop neighbor
else:
distances[node_idx, j - start_idx] = 0.3 # Distant
else:
# No edges - use position-based encoding
for i in range(num_nodes):
for j in range(max_dist):
distances[i, j] = (max_dist - j) / max_dist
return seq_pos.unsqueeze(1), distances |