File size: 11,113 Bytes
f3d5bea
 
 
 
 
8e24e05
 
f3d5bea
 
 
 
8e24e05
f3d5bea
 
 
 
8e24e05
 
 
 
 
 
 
 
f3d5bea
8e24e05
 
 
 
 
 
 
 
f3d5bea
 
 
8e24e05
 
f3d5bea
 
 
 
 
 
 
 
8e24e05
f3d5bea
 
 
 
 
 
8e24e05
 
f3d5bea
 
 
 
 
 
 
 
 
 
8e24e05
f3d5bea
 
 
8e24e05
 
 
 
 
 
f3d5bea
8e24e05
 
f3d5bea
 
 
8e24e05
 
 
 
 
f3d5bea
 
8e24e05
 
 
 
 
 
 
 
 
 
f3d5bea
 
8e24e05
 
f3d5bea
 
8e24e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d5bea
8e24e05
f3d5bea
 
 
 
 
 
 
8e24e05
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d5bea
 
8e24e05
 
f3d5bea
 
 
 
 
8e24e05
 
 
 
 
 
f3d5bea
 
8e24e05
f3d5bea
8e24e05
 
 
 
f3d5bea
8e24e05
 
 
 
 
 
 
 
 
 
f3d5bea
 
 
 
 
8e24e05
 
f3d5bea
 
 
 
 
 
 
 
 
 
8e24e05
 
 
 
f3d5bea
8e24e05
 
 
 
 
 
f3d5bea
 
 
 
 
 
8e24e05
f3d5bea
 
 
 
 
8e24e05
f3d5bea
 
 
 
 
 
 
8e24e05
 
 
 
f3d5bea
8e24e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d5bea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import numpy as np
import networkx as nx
from scipy.sparse.linalg import eigsh
from sklearn.cluster import SpectralClustering
import warnings
warnings.filterwarnings('ignore')

class GraphSequencer:
    """
    Production-ready graph ordering strategies
    Device-safe implementation with performance optimizations
    """
    
    @staticmethod
    def bfs_ordering(edge_index, num_nodes, start_node=None):
        """Breadth-first search ordering - optimized version"""
        device = edge_index.device
        
        if num_nodes <= 1:
            return torch.arange(num_nodes, device=device)
        
        # Convert to adjacency list efficiently
        adj_list = [[] for _ in range(num_nodes)]
        edge_list = edge_index.t().cpu().numpy()
        
        for src, dst in edge_list:
            if src < num_nodes and dst < num_nodes:
                adj_list[src].append(dst)
                adj_list[dst].append(src)
        
        # Remove duplicates and sort for determinism
        adj_list = [sorted(list(set(neighbors))) for neighbors in adj_list]
        
        # Start from highest degree node if not specified
        if start_node is None:
            degrees = [len(neighbors) for neighbors in adj_list]
            start_node = np.argmax(degrees) if degrees else 0
        
        # BFS traversal
        visited = set()
        order = []
        queue = [start_node]
        
        while queue:
            node = queue.pop(0)
            if node in visited or node >= num_nodes:
                continue
                
            visited.add(node)
            order.append(node)
            
            # Add neighbors by degree (deterministic)
            neighbors = adj_list[node]
            neighbors.sort(key=lambda n: (len(adj_list[n]), n), reverse=True)
            
            for neighbor in neighbors:
                if neighbor not in visited:
                    queue.append(neighbor)
        
        # Add any disconnected nodes
        for node in range(num_nodes):
            if node not in visited:
                order.append(node)
        
        return torch.tensor(order, dtype=torch.long, device=device)
    
    @staticmethod
    def spectral_ordering(edge_index, num_nodes):
        """Spectral ordering using graph Laplacian eigenvector - robust version"""
        device = edge_index.device
        
        if num_nodes <= 2:
            return torch.arange(num_nodes, device=device)
        
        try:
            # Move to CPU for scipy operations
            edge_index_cpu = edge_index.cpu().numpy()
            
            # Create adjacency matrix
            A = np.zeros((num_nodes, num_nodes))
            valid_edges = (edge_index_cpu[0] < num_nodes) & (edge_index_cpu[1] < num_nodes)
            valid_edge_index = edge_index_cpu[:, valid_edges]
            
            A[valid_edge_index[0], valid_edge_index[1]] = 1
            A[valid_edge_index[1], valid_edge_index[0]] = 1  # Undirected
            
            # Degree matrix
            degrees = np.sum(A, axis=1)
            
            # Handle disconnected components
            if np.any(degrees == 0):
                # Add self-loops to isolated nodes
                isolated = degrees == 0
                A[isolated, isolated] = 1
                degrees = np.sum(A, axis=1)
            
            D = np.diag(degrees)
            
            # Normalized Laplacian: L = D^(-1/2) * (D - A) * D^(-1/2)
            degrees_sqrt_inv = np.where(degrees > 0, 1.0 / np.sqrt(degrees), 0)
            D_sqrt_inv = np.diag(degrees_sqrt_inv)
            L = D_sqrt_inv @ (D - A) @ D_sqrt_inv
            
            # Compute eigenvectors
            k = min(10, num_nodes - 1)
            try:
                eigenvals, eigenvecs = eigsh(L, k=k, which='SM', sigma=0.0)
                
                # Use second smallest eigenvector (Fiedler vector)
                if eigenvecs.shape[1] > 1:
                    fiedler_vector = eigenvecs[:, 1]
                else:
                    fiedler_vector = eigenvecs[:, 0]
                
                # Order by Fiedler vector values
                order = np.argsort(fiedler_vector)
                
            except Exception:
                # Fallback to degree ordering
                order = np.argsort(-degrees)
            
            return torch.tensor(order, dtype=torch.long, device=device)
            
        except Exception as e:
            print(f"Spectral ordering failed: {e}, falling back to degree ordering")
            return GraphSequencer.degree_ordering(edge_index, num_nodes)
    
    @staticmethod
    def degree_ordering(edge_index, num_nodes):
        """Order nodes by degree (high to low) - optimized version"""
        device = edge_index.device
        
        # Count degrees efficiently
        degrees = torch.zeros(num_nodes, dtype=torch.long, device=device)
        
        if edge_index.shape[1] > 0:
            # Ensure valid indices
            valid_mask = (edge_index[0] < num_nodes) & (edge_index[1] < num_nodes)
            valid_edges = edge_index[:, valid_mask]
            
            if valid_edges.shape[1] > 0:
                degrees.index_add_(0, valid_edges[0], torch.ones(valid_edges.shape[1], dtype=torch.long, device=device))
                degrees.index_add_(0, valid_edges[1], torch.ones(valid_edges.shape[1], dtype=torch.long, device=device))
        
        # Sort by degree (descending), then by node index for determinism
        node_indices = torch.arange(num_nodes, device=device)
        _, order = torch.sort(-degrees * num_nodes - node_indices)
        
        return order
    
    @staticmethod
    def community_ordering(edge_index, num_nodes, n_clusters=None):
        """Community-aware ordering - robust version"""
        device = edge_index.device
        
        if num_nodes <= 3:
            return GraphSequencer.degree_ordering(edge_index, num_nodes)
        
        try:
            if n_clusters is None:
                n_clusters = max(2, min(10, int(np.sqrt(num_nodes))))
            
            n_clusters = min(n_clusters, num_nodes)
            
            # Convert to adjacency matrix on CPU
            edge_index_cpu = edge_index.cpu().numpy()
            A = np.zeros((num_nodes, num_nodes))
            
            valid_edges = (edge_index_cpu[0] < num_nodes) & (edge_index_cpu[1] < num_nodes)
            valid_edge_index = edge_index_cpu[:, valid_edges]
            
            if valid_edge_index.shape[1] > 0:
                A[valid_edge_index[0], valid_edge_index[1]] = 1
                A[valid_edge_index[1], valid_edge_index[0]] = 1
            
            # Add small diagonal for stability
            A += np.eye(num_nodes) * 0.01
            
            # Spectral clustering
            clustering = SpectralClustering(
                n_clusters=n_clusters, 
                affinity='precomputed',
                random_state=42,
                assign_labels='discretize'
            )
            
            labels = clustering.fit_predict(A)
            
            # Order by cluster, then by degree within cluster
            degrees = np.sum(A, axis=1)
            
            order = []
            for cluster in range(n_clusters):
                cluster_nodes = np.where(labels == cluster)[0]
                if len(cluster_nodes) > 0:
                    cluster_degrees = degrees[cluster_nodes]
                    cluster_order = cluster_nodes[np.argsort(-cluster_degrees)]
                    order.extend(cluster_order)
            
            # Add any missed nodes
            for i in range(num_nodes):
                if i not in order:
                    order.append(i)
            
            return torch.tensor(order, dtype=torch.long, device=device)
            
        except Exception as e:
            print(f"Community ordering failed: {e}, falling back to BFS ordering")
            return GraphSequencer.bfs_ordering(edge_index, num_nodes)

class PositionalEncoder:
    """Graph-aware positional encoding - optimized version"""
    
    @staticmethod
    def encode_positions(x, edge_index, order, max_dist=10):
        """
        Create positional encodings that preserve graph structure
        Optimized for training stability
        """
        num_nodes = x.size(0)
        device = x.device
        
        # Sequential positions
        seq_pos = torch.zeros(num_nodes, device=device)
        seq_pos[order] = torch.arange(num_nodes, device=device, dtype=torch.float)
        seq_pos = seq_pos / max(num_nodes, 1)
        
        # Enhanced distance encoding
        distances = torch.zeros((num_nodes, max_dist), device=device)
        
        if edge_index.shape[1] > 0:
            # Create adjacency matrix efficiently
            adj = torch.zeros(num_nodes, num_nodes, device=device, dtype=torch.bool)
            
            # Filter valid edges
            valid_mask = (edge_index[0] < num_nodes) & (edge_index[1] < num_nodes)
            if valid_mask.any():
                valid_edges = edge_index[:, valid_mask]
                adj[valid_edges[0], valid_edges[1]] = True
                adj[valid_edges[1], valid_edges[0]] = True  # Undirected
            
            # Compute 2-hop neighbors for richer encoding
            adj2 = torch.matmul(adj.float(), adj.float()) > 0
            
            # Fill distance features
            for i, node in enumerate(order):
                node_idx = node.item() if isinstance(node, torch.Tensor) else node
                
                if node_idx < num_nodes:
                    # Get 1-hop and 2-hop neighbors
                    neighbors_1hop = torch.where(adj[node_idx])[0]
                    neighbors_2hop = torch.where(adj2[node_idx] & ~adj[node_idx])[0]
                    
                    # Fill distance features based on order position
                    start_idx = max(0, i - max_dist)
                    for j in range(start_idx, i):
                        if j - start_idx < max_dist:
                            prev_node = order[j]
                            prev_idx = prev_node.item() if isinstance(prev_node, torch.Tensor) else prev_node
                            
                            if prev_idx < num_nodes:
                                # Multi-scale distance encoding
                                if prev_idx in neighbors_1hop:
                                    distances[node_idx, j - start_idx] = 0.9  # Direct neighbor
                                elif prev_idx in neighbors_2hop:
                                    distances[node_idx, j - start_idx] = 0.6  # 2-hop neighbor
                                else:
                                    distances[node_idx, j - start_idx] = 0.3  # Distant
        else:
            # No edges - use position-based encoding
            for i in range(num_nodes):
                for j in range(max_dist):
                    distances[i, j] = (max_dist - j) / max_dist
        
        return seq_pos.unsqueeze(1), distances