File size: 9,375 Bytes
abceea1
021bc4e
abceea1
021bc4e
abceea1
beb8b0c
abceea1
 
 
021bc4e
abceea1
 
 
beb8b0c
 
 
 
021bc4e
beb8b0c
 
 
 
 
 
abceea1
 
 
 
021bc4e
 
 
 
 
abceea1
021bc4e
abceea1
beb8b0c
 
 
 
 
021bc4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb8b0c
021bc4e
beb8b0c
021bc4e
beb8b0c
 
 
021bc4e
beb8b0c
021bc4e
beb8b0c
 
 
abceea1
beb8b0c
 
021bc4e
abceea1
021bc4e
 
 
 
 
abceea1
 
021bc4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abceea1
021bc4e
abceea1
021bc4e
abceea1
beb8b0c
 
021bc4e
beb8b0c
 
 
 
021bc4e
beb8b0c
021bc4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb8b0c
 
021bc4e
beb8b0c
021bc4e
 
 
 
 
 
 
abceea1
 
 
 
021bc4e
abceea1
 
021bc4e
abceea1
021bc4e
abceea1
 
021bc4e
abceea1
 
 
 
 
 
beb8b0c
 
 
abceea1
 
 
 
 
 
 
 
021bc4e
beb8b0c
 
 
 
021bc4e
beb8b0c
 
 
 
021bc4e
beb8b0c
021bc4e
 
 
 
 
beb8b0c
 
 
021bc4e
beb8b0c
 
021bc4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abceea1
beb8b0c
 
021bc4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
from torch_geometric.datasets import Planetoid, TUDataset, Amazon, Coauthor
from torch_geometric.loader import DataLoader
from torch_geometric.transforms import NormalizeFeatures, Compose
import yaml
import os

class GraphDataLoader:
    """
    Production data loading with comprehensive dataset support
    """
    
    def __init__(self, config_path='config.yaml'):
        if os.path.exists(config_path):
            with open(config_path, 'r') as f:
                self.config = yaml.safe_load(f)
        else:
            # Default config
            self.config = {
                'data': {
                    'batch_size': 32,
                    'test_split': 0.2
                }
            }
            
        self.batch_size = self.config['data']['batch_size']
        self.test_split = self.config['data']['test_split']
        
        # Standard transform
        self.transform = Compose([
            NormalizeFeatures()
        ])
        
    def load_node_classification_data(self, dataset_name='Cora'):
        """Load node classification datasets with proper splits"""
        
        try:
            if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
                dataset = Planetoid(
                    root=f'./data/{dataset_name}',
                    name=dataset_name,
                    transform=self.transform
                )
                
            elif dataset_name in ['Computers', 'Photo']:
                dataset = Amazon(
                    root=f'./data/Amazon{dataset_name}',
                    name=dataset_name,
                    transform=self.transform
                )
                
            elif dataset_name in ['CS', 'Physics']:
                dataset = Coauthor(
                    root=f'./data/Coauthor{dataset_name}',
                    name=dataset_name,
                    transform=self.transform
                )
                
            else:
                print(f"Unknown dataset {dataset_name}, falling back to Cora")
                dataset = Planetoid(
                    root='./data/Cora',
                    name='Cora',
                    transform=self.transform
                )
                
        except Exception as e:
            print(f"Error loading {dataset_name}: {e}")
            # Fallback to Cora
            dataset = Planetoid(
                root='./data/Cora',
                name='Cora',
                transform=self.transform
            )
        
        # Ensure proper masks exist
        data = dataset[0]
        self._ensure_masks(data)
        
        return dataset
    
    def _ensure_masks(self, data):
        """Ensure train/val/test masks exist"""
        num_nodes = data.num_nodes
        
        if not hasattr(data, 'train_mask') or data.train_mask is None:
            # Create random splits
            indices = torch.randperm(num_nodes)
            
            train_size = int(0.6 * num_nodes)
            val_size = int(0.2 * num_nodes)
            
            train_mask = torch.zeros(num_nodes, dtype=torch.bool)
            val_mask = torch.zeros(num_nodes, dtype=torch.bool)
            test_mask = torch.zeros(num_nodes, dtype=torch.bool)
            
            train_mask[indices[:train_size]] = True
            val_mask[indices[train_size:train_size + val_size]] = True
            test_mask[indices[train_size + val_size:]] = True
            
            data.train_mask = train_mask
            data.val_mask = val_mask
            data.test_mask = test_mask
    
    def load_graph_classification_data(self, dataset_name='MUTAG'):
        """Load graph classification datasets"""
        
        valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY', 'DD']
        
        try:
            if dataset_name not in valid_datasets:
                dataset_name = 'MUTAG'
                
            dataset = TUDataset(
                root=f'./data/{dataset_name}',
                name=dataset_name,
                transform=self.transform
            )
            
            # Handle missing features
            if dataset[0].x is None:
                # Use degree as features
                max_degree = 0
                for data in dataset:
                    if data.edge_index.shape[1] > 0:
                        degree = torch.zeros(data.num_nodes)
                        degree.index_add_(0, data.edge_index[0], torch.ones(data.edge_index.shape[1]))
                        max_degree = max(max_degree, degree.max().item())
                
                for data in dataset:
                    if data.edge_index.shape[1] > 0:
                        degree = torch.zeros(data.num_nodes)
                        degree.index_add_(0, data.edge_index[0], torch.ones(data.edge_index.shape[1]))
                        data.x = degree.unsqueeze(1) / max(max_degree, 1)
                    else:
                        data.x = torch.zeros(data.num_nodes, 1)
                        
        except Exception as e:
            print(f"Error loading {dataset_name}: {e}")
            # Create minimal synthetic dataset
            from torch_geometric.data import Data
            dataset = [
                Data(
                    x=torch.randn(10, 5),
                    edge_index=torch.randint(0, 10, (2, 20)),
                    y=torch.randint(0, 2, (1,))
                ) for _ in range(100)
            ]
            
        return dataset
    
    def create_dataloaders(self, dataset, task_type='node_classification'):
        """Create train/val/test splits with dataloaders"""
        
        if task_type == 'node_classification':
            # Single graph with masks
            data = dataset[0]
            return data, None, None
            
        elif task_type == 'graph_classification':
            # Split dataset
            num_graphs = len(dataset)
            indices = torch.randperm(num_graphs)
            
            train_size = int(0.8 * num_graphs)
            val_size = int(0.1 * num_graphs)
            
            train_dataset = [dataset[i] for i in indices[:train_size]]
            val_dataset = [dataset[i] for i in indices[train_size:train_size+val_size]]
            test_dataset = [dataset[i] for i in indices[train_size+val_size:]]
            
            train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
            val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
            test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
            
            return train_loader, val_loader, test_loader
            
    def get_dataset_info(self, dataset):
        """Get comprehensive dataset information"""
        try:
            if hasattr(dataset, 'num_features'):
                num_features = dataset.num_features
            else:
                num_features = dataset[0].x.size(1) if dataset[0].x is not None else 1
                
            if hasattr(dataset, 'num_classes'):
                num_classes = dataset.num_classes
            else:
                if hasattr(dataset[0], 'y') and dataset[0].y is not None:
                    if len(dataset) > 1:
                        all_labels = []
                        for data in dataset:
                            if data.y is not None:
                                all_labels.extend(data.y.flatten().tolist())
                        num_classes = len(set(all_labels)) if all_labels else 2
                    else:
                        num_classes = len(torch.unique(dataset[0].y))
                else:
                    num_classes = 2
                    
            num_graphs = len(dataset)
            
            # Calculate statistics
            total_nodes = sum([data.num_nodes for data in dataset])
            total_edges = sum([data.num_edges for data in dataset])
            
            avg_nodes = total_nodes / num_graphs
            avg_edges = total_edges / num_graphs
            
            # Additional statistics
            node_counts = [data.num_nodes for data in dataset]
            edge_counts = [data.num_edges for data in dataset]
            
            stats = {
                'num_features': num_features,
                'num_classes': num_classes,
                'num_graphs': num_graphs,
                'avg_nodes': avg_nodes,
                'avg_edges': avg_edges,
                'min_nodes': min(node_counts),
                'max_nodes': max(node_counts),
                'min_edges': min(edge_counts),
                'max_edges': max(edge_counts),
                'total_nodes': total_nodes,
                'total_edges': total_edges
            }
            
        except Exception as e:
            print(f"Error getting dataset info: {e}")
            # Return safe defaults
            stats = {
                'num_features': 1433,
                'num_classes': 7,
                'num_graphs': 1,
                'avg_nodes': 2708.0,
                'avg_edges': 10556.0,
                'min_nodes': 2708,
                'max_nodes': 2708,
                'min_edges': 10556,
                'max_edges': 10556,
                'total_nodes': 2708,
                'total_edges': 10556
            }
            
        return stats