File size: 12,150 Bytes
58746a0 0470ced 58746a0 0470ced dc4c723 58746a0 ed6db0b 58746a0 dc4c723 ed6db0b 58746a0 dc4c723 58746a0 dc4c723 58746a0 dc4c723 58746a0 ed6db0b 58746a0 ed6db0b 58746a0 ed6db0b 58746a0 ed6db0b 58746a0 0470ced 58746a0 0470ced 58746a0 ed6db0b dc4c723 58746a0 0470ced ed6db0b 58746a0 ed6db0b 0470ced 58746a0 ed6db0b 58746a0 0470ced 58746a0 dc4c723 58746a0 0470ced dc4c723 ed6db0b 0470ced dc4c723 0470ced dc4c723 0470ced dc4c723 0470ced ed6db0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import plotly.graph_objects as go
import plotly.express as px
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
import networkx as nx
import torch
import numpy as np
import pandas as pd
import logging
logger = logging.getLogger(__name__)
class GraphVisualizer:
"""Advanced graph visualization utilities"""
@staticmethod
def create_graph_plot(data, max_nodes=500, layout_algorithm='spring', node_size_factor=1.0):
"""Create interactive graph visualization"""
try:
if not hasattr(data, 'edge_index') or not hasattr(data, 'num_nodes'):
raise ValueError("Data must have edge_index and num_nodes attributes")
num_nodes = min(data.num_nodes, max_nodes)
if num_nodes <= 0:
raise ValueError("No nodes to visualize")
# Create NetworkX graph
G = nx.Graph()
if data.edge_index.size(1) > 0:
edge_list = data.edge_index.t().cpu().numpy()
edge_list = edge_list[
(edge_list[:, 0] < num_nodes) & (edge_list[:, 1] < num_nodes)
]
if len(edge_list) > 0:
G.add_edges_from(edge_list)
G.add_nodes_from(range(num_nodes))
# Layout
pos = nx.spring_layout(G, seed=42)
# Node colors
if hasattr(data, 'y') and data.y is not None:
node_colors = data.y.cpu().numpy()[:num_nodes]
else:
node_colors = [0] * num_nodes
# Create edge traces
edge_x, edge_y = [], []
for edge in G.edges():
if edge[0] in pos and edge[1] in pos:
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
# Create node traces
node_x = [pos[node][0] for node in G.nodes()]
node_y = [pos[node][1] for node in G.nodes()]
fig = go.Figure()
# Add edges
if edge_x:
fig.add_trace(go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.8, color='rgba(125,125,125,0.5)'),
hoverinfo='none',
mode='lines',
showlegend=False
))
# Add nodes
fig.add_trace(go.Scatter(
x=node_x, y=node_y,
mode='markers',
marker=dict(
size=8,
color=node_colors,
colorscale='Viridis',
line=dict(width=2, color='white'),
opacity=0.8
),
text=[f"Node {i}" for i in range(len(node_x))],
hoverinfo='text',
showlegend=False
))
fig.update_layout(
title=f'Graph Visualization ({num_nodes} nodes)',
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white',
width=800,
height=600
)
return fig
except Exception as e:
logger.error(f"Graph visualization error: {e}")
return GraphVisualizer._create_error_figure(f"Visualization error: {str(e)}")
@staticmethod
def create_metrics_plot(metrics):
"""Create comprehensive metrics visualization"""
try:
metric_names = []
metric_values = []
for key, value in metrics.items():
if isinstance(value, (int, float)) and key not in ['error', 'loss']:
if not (np.isnan(value) or np.isinf(value)) and 0 <= value <= 1:
metric_names.append(key.replace('_', ' ').title())
metric_values.append(value)
if not metric_names:
return GraphVisualizer._create_error_figure("No valid metrics to display")
fig = make_subplots(
rows=1, cols=2,
subplot_titles=('Performance Metrics', 'Metric Radar Chart'),
specs=[[{"type": "bar"}, {"type": "polar"}]]
)
colors = px.colors.qualitative.Set3[:len(metric_names)]
fig.add_trace(
go.Bar(
x=metric_names,
y=metric_values,
marker_color=colors,
text=[f'{v:.3f}' for v in metric_values],
textposition='auto',
showlegend=False
),
row=1, col=1
)
fig.add_trace(
go.Scatterpolar(
r=metric_values + [metric_values[0]],
theta=metric_names + [metric_names[0]],
fill='toself',
line=dict(color='blue'),
marker=dict(size=8),
showlegend=False
),
row=1, col=2
)
fig.update_layout(
title='Model Performance Dashboard',
height=400,
showlegend=False
)
fig.update_xaxes(title_text="Metrics", tickangle=45, row=1, col=1)
fig.update_yaxes(title_text="Score", range=[0, 1], row=1, col=1)
fig.update_polars(
radialaxis=dict(range=[0, 1], showticklabels=True),
row=1, col=2
)
return fig
except Exception as e:
logger.error(f"Metrics plot error: {e}")
return GraphVisualizer._create_error_figure(f"Metrics plot error: {str(e)}")
@staticmethod
def create_training_history_plot(history):
"""Create comprehensive training history visualization"""
try:
if not isinstance(history, dict) or not history:
return GraphVisualizer._create_error_figure("No training history available")
required_keys = ['train_loss', 'train_acc']
for key in required_keys:
if key not in history or not history[key]:
return GraphVisualizer._create_error_figure(f"Missing {key} in training history")
epochs = list(range(len(history['train_loss'])))
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Loss Over Time', 'Accuracy Over Time', 'Learning Rate', 'Training Progress'),
specs=[[{"secondary_y": False}, {"secondary_y": False}],
[{"secondary_y": False}, {"secondary_y": False}]]
)
# Training loss
fig.add_trace(
go.Scatter(
x=epochs, y=history['train_loss'],
mode='lines', name='Train Loss',
line=dict(color='blue', width=2),
showlegend=False
),
row=1, col=1
)
if 'val_loss' in history and history['val_loss']:
fig.add_trace(
go.Scatter(
x=epochs, y=history['val_loss'],
mode='lines', name='Val Loss',
line=dict(color='red', width=2),
showlegend=False
),
row=1, col=1
)
# Training accuracy
fig.add_trace(
go.Scatter(
x=epochs, y=history['train_acc'],
mode='lines', name='Train Acc',
line=dict(color='green', width=2),
showlegend=False
),
row=1, col=2
)
if 'val_acc' in history and history['val_acc']:
fig.add_trace(
go.Scatter(
x=epochs, y=history['val_acc'],
mode='lines', name='Val Acc',
line=dict(color='orange', width=2),
showlegend=False
),
row=1, col=2
)
# Learning rate
if 'lr' in history and history['lr']:
fig.add_trace(
go.Scatter(
x=epochs, y=history['lr'],
mode='lines', name='Learning Rate',
line=dict(color='purple', width=2),
showlegend=False
),
row=2, col=1
)
# Training progress summary
final_metrics = {
'Final Train Acc': history['train_acc'][-1] if history['train_acc'] else 0,
'Final Train Loss': history['train_loss'][-1] if history['train_loss'] else 0,
}
if 'val_acc' in history and history['val_acc']:
final_metrics['Final Val Acc'] = history['val_acc'][-1]
final_metrics['Best Val Acc'] = max(history['val_acc'])
metric_names = list(final_metrics.keys())
metric_values = list(final_metrics.values())
fig.add_trace(
go.Bar(
x=metric_names,
y=metric_values,
marker_color=['lightblue', 'lightcoral', 'lightgreen', 'gold'],
text=[f'{v:.3f}' for v in metric_values],
textposition='auto',
showlegend=False
),
row=2, col=2
)
fig.update_layout(
title='Training History Dashboard',
height=600,
showlegend=True
)
fig.update_xaxes(title_text="Epoch", row=1, col=1)
fig.update_xaxes(title_text="Epoch", row=1, col=2)
fig.update_xaxes(title_text="Epoch", row=2, col=1)
fig.update_xaxes(title_text="Metric", tickangle=45, row=2, col=2)
fig.update_yaxes(title_text="Loss", row=1, col=1)
fig.update_yaxes(title_text="Accuracy", range=[0, 1], row=1, col=2)
fig.update_yaxes(title_text="Learning Rate", type="log", row=2, col=1)
fig.update_yaxes(title_text="Value", row=2, col=2)
return fig
except Exception as e:
logger.error(f"Training history plot error: {e}")
return GraphVisualizer._create_error_figure(f"Training history plot error: {str(e)}")
@staticmethod
def _create_error_figure(error_message):
"""Create an error figure with message"""
fig = go.Figure()
fig.add_annotation(
text=error_message,
x=0.5, y=0.5,
xref="paper", yref="paper",
showarrow=False,
font=dict(size=14, color="red"),
bgcolor="rgba(255,255,255,0.8)",
bordercolor="red",
borderwidth=1
)
fig.update_layout(
title="Visualization Error",
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white',
width=600,
height=400
)
return fig |