Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,6 +36,16 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
36 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
37 |
tokenizer.pad_token = tokenizer.eos_token
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Generation settings
|
40 |
generation_config = GenerationConfig(
|
41 |
max_new_tokens=150,
|
@@ -56,16 +66,6 @@ llm_pipeline = pipeline(
|
|
56 |
)
|
57 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
58 |
|
59 |
-
# Connect to Qdrant + embedding
|
60 |
-
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
61 |
-
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
62 |
-
|
63 |
-
vector_store = Qdrant(
|
64 |
-
client=qdrant_client,
|
65 |
-
collection_name=COLLECTION_NAME,
|
66 |
-
embeddings=embedding
|
67 |
-
)
|
68 |
-
|
69 |
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
70 |
|
71 |
# Set up RAG QA chain
|
@@ -110,6 +110,26 @@ def generate_prompt(question: str) -> str:
|
|
110 |
Question: {question}
|
111 |
Answer:"""
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
# Input schema
|
114 |
# class ChatRequest(BaseModel):
|
115 |
# message: str
|
|
|
36 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
37 |
tokenizer.pad_token = tokenizer.eos_token
|
38 |
|
39 |
+
# Connect to Qdrant + embedding
|
40 |
+
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
41 |
+
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
42 |
+
|
43 |
+
vector_store = Qdrant(
|
44 |
+
client=qdrant_client,
|
45 |
+
collection_name=COLLECTION_NAME,
|
46 |
+
embeddings=embedding
|
47 |
+
)
|
48 |
+
|
49 |
# Generation settings
|
50 |
generation_config = GenerationConfig(
|
51 |
max_new_tokens=150,
|
|
|
66 |
)
|
67 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
70 |
|
71 |
# Set up RAG QA chain
|
|
|
110 |
Question: {question}
|
111 |
Answer:"""
|
112 |
|
113 |
+
|
114 |
+
# def generate_prompt(question: str) -> str:
|
115 |
+
# lang = detect(question)
|
116 |
+
# if lang == "ar":
|
117 |
+
# return (
|
118 |
+
# "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
|
119 |
+
# "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
|
120 |
+
# "- وضوح وسلاسة كل نقطة\n"
|
121 |
+
# "- تجنب الحشو والعبارات الزائدة\n"
|
122 |
+
# f"\nالسؤال: {question}\nالإجابة:"
|
123 |
+
# )
|
124 |
+
# else:
|
125 |
+
# return (
|
126 |
+
# "Answer the following medical question in clear English with a detailed, non-redundant response. "
|
127 |
+
# "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
|
128 |
+
# "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
|
129 |
+
# "in concise and distinct bullet points:\n"
|
130 |
+
# f"Question: {question}\nAnswer:"
|
131 |
+
# )
|
132 |
+
|
133 |
# Input schema
|
134 |
# class ChatRequest(BaseModel):
|
135 |
# message: str
|