khalednabawi11 commited on
Commit
10ffa61
·
verified ·
1 Parent(s): 1761075

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -10
app.py CHANGED
@@ -36,6 +36,16 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
36
  model = AutoModelForCausalLM.from_pretrained(model_name)
37
  tokenizer.pad_token = tokenizer.eos_token
38
 
 
 
 
 
 
 
 
 
 
 
39
  # Generation settings
40
  generation_config = GenerationConfig(
41
  max_new_tokens=150,
@@ -56,16 +66,6 @@ llm_pipeline = pipeline(
56
  )
57
  llm = HuggingFacePipeline(pipeline=llm_pipeline)
58
 
59
- # Connect to Qdrant + embedding
60
- embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
61
- qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
62
-
63
- vector_store = Qdrant(
64
- client=qdrant_client,
65
- collection_name=COLLECTION_NAME,
66
- embeddings=embedding
67
- )
68
-
69
  retriever = vector_store.as_retriever(search_kwargs={"k": 3})
70
 
71
  # Set up RAG QA chain
@@ -110,6 +110,26 @@ def generate_prompt(question: str) -> str:
110
  Question: {question}
111
  Answer:"""
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  # Input schema
114
  # class ChatRequest(BaseModel):
115
  # message: str
 
36
  model = AutoModelForCausalLM.from_pretrained(model_name)
37
  tokenizer.pad_token = tokenizer.eos_token
38
 
39
+ # Connect to Qdrant + embedding
40
+ embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
41
+ qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
42
+
43
+ vector_store = Qdrant(
44
+ client=qdrant_client,
45
+ collection_name=COLLECTION_NAME,
46
+ embeddings=embedding
47
+ )
48
+
49
  # Generation settings
50
  generation_config = GenerationConfig(
51
  max_new_tokens=150,
 
66
  )
67
  llm = HuggingFacePipeline(pipeline=llm_pipeline)
68
 
 
 
 
 
 
 
 
 
 
 
69
  retriever = vector_store.as_retriever(search_kwargs={"k": 3})
70
 
71
  # Set up RAG QA chain
 
110
  Question: {question}
111
  Answer:"""
112
 
113
+
114
+ # def generate_prompt(question: str) -> str:
115
+ # lang = detect(question)
116
+ # if lang == "ar":
117
+ # return (
118
+ # "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
119
+ # "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
120
+ # "- وضوح وسلاسة كل نقطة\n"
121
+ # "- تجنب الحشو والعبارات الزائدة\n"
122
+ # f"\nالسؤال: {question}\nالإجابة:"
123
+ # )
124
+ # else:
125
+ # return (
126
+ # "Answer the following medical question in clear English with a detailed, non-redundant response. "
127
+ # "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
128
+ # "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
129
+ # "in concise and distinct bullet points:\n"
130
+ # f"Question: {question}\nAnswer:"
131
+ # )
132
+
133
  # Input schema
134
  # class ChatRequest(BaseModel):
135
  # message: str