Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import asyncio
|
3 |
import logging
|
4 |
import signal
|
5 |
import uvicorn
|
6 |
-
import os
|
7 |
|
8 |
from fastapi import FastAPI, Request, HTTPException, status
|
9 |
from pydantic import BaseModel, Field
|
10 |
from langdetect import detect
|
11 |
|
12 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
|
13 |
-
from
|
14 |
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
-
from
|
16 |
-
from langchain.llms import HuggingFacePipeline
|
17 |
from qdrant_client import QdrantClient
|
18 |
-
from
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
-
from contextlib import asynccontextmanager
|
21 |
|
22 |
-
#
|
23 |
-
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
24 |
-
QDRANT_URL = os.getenv("QDRANT_URL")
|
25 |
COLLECTION_NAME = "arabic_rag_collection"
|
26 |
-
QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
|
27 |
-
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")
|
28 |
|
29 |
# === LOGGING === #
|
30 |
-
logging.basicConfig(level=logging.
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
33 |
-
#
|
34 |
model_name = "FreedomIntelligence/Apollo-7B"
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
37 |
tokenizer.pad_token = tokenizer.eos_token
|
38 |
|
39 |
-
#
|
40 |
-
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
41 |
-
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
42 |
-
|
43 |
-
vector_store = Qdrant(
|
44 |
-
client=qdrant_client,
|
45 |
-
collection_name=COLLECTION_NAME,
|
46 |
-
embeddings=embedding
|
47 |
-
)
|
48 |
-
|
49 |
-
# Generation settings
|
50 |
generation_config = GenerationConfig(
|
51 |
max_new_tokens=150,
|
52 |
temperature=0.2,
|
@@ -56,7 +257,6 @@ generation_config = GenerationConfig(
|
|
56 |
repetition_penalty=1.3,
|
57 |
)
|
58 |
|
59 |
-
# Text generation pipeline
|
60 |
llm_pipeline = pipeline(
|
61 |
model=model,
|
62 |
tokenizer=tokenizer,
|
@@ -64,53 +264,20 @@ llm_pipeline = pipeline(
|
|
64 |
generation_config=generation_config,
|
65 |
device=model.device.index if model.device.type == "cuda" else -1
|
66 |
)
|
67 |
-
|
68 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
chain_type="stuff"
|
77 |
)
|
|
|
78 |
|
79 |
-
#
|
80 |
-
app = FastAPI(title="Apollo RAG Medical Chatbot")
|
81 |
-
|
82 |
-
class Query(BaseModel):
|
83 |
-
question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
|
84 |
-
|
85 |
-
class TimeoutCallback(BaseCallbackHandler):
|
86 |
-
def __init__(self, timeout_seconds: int = 60):
|
87 |
-
self.timeout_seconds = timeout_seconds
|
88 |
-
self.start_time = None
|
89 |
-
|
90 |
-
async def on_llm_start(self, *args, **kwargs):
|
91 |
-
self.start_time = asyncio.get_event_loop().time()
|
92 |
-
|
93 |
-
async def on_llm_new_token(self, *args, **kwargs):
|
94 |
-
if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
|
95 |
-
raise TimeoutError("LLM processing timeout")
|
96 |
-
|
97 |
-
# Prompt template
|
98 |
-
# def generate_prompt(question: str) -> str:
|
99 |
-
# lang = detect(question)
|
100 |
-
# if lang == "ar":
|
101 |
-
# return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
|
102 |
-
# وتأكد من ان:
|
103 |
-
# - عدم تكرار أي نقطة أو عبارة أو كلمة
|
104 |
-
# - وضوح وسلاسة كل نقطة
|
105 |
-
# - تجنب الحشو والعبارات الزائدة
|
106 |
-
# السؤال: {question}
|
107 |
-
# الإجابة:"""
|
108 |
-
# else:
|
109 |
-
# return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If the context lacks information, rely on prior medical knowledge.
|
110 |
-
# Question: {question}
|
111 |
-
# Answer:"""
|
112 |
-
|
113 |
-
|
114 |
def generate_prompt(question: str) -> str:
|
115 |
lang = detect(question)
|
116 |
if lang == "ar":
|
@@ -124,23 +291,28 @@ def generate_prompt(question: str) -> str:
|
|
124 |
else:
|
125 |
return (
|
126 |
"Answer the following medical question in clear English with a detailed, non-redundant response. "
|
127 |
-
"Do not repeat ideas, phrases, or restate the question
|
128 |
-
"information, rely on
|
129 |
-
"in concise and distinct bullet points:\n"
|
130 |
f"Question: {question}\nAnswer:"
|
131 |
)
|
132 |
-
|
133 |
-
# Input schema
|
134 |
-
# class ChatRequest(BaseModel):
|
135 |
-
# message: str
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
# def chat_rag(req: ChatRequest):
|
140 |
-
# prompt = generate_prompt(req.message)
|
141 |
-
# response = qa_chain.run(prompt)
|
142 |
-
# return {"response": response}
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# === ROUTES === #
|
146 |
@app.get("/")
|
@@ -150,55 +322,34 @@ async def root():
|
|
150 |
@app.post("/ask")
|
151 |
async def ask(query: Query):
|
152 |
try:
|
153 |
-
|
154 |
-
prompt = generate_prompt(query.question)
|
155 |
-
timeout_callback = TimeoutCallback(timeout_seconds=60)
|
156 |
-
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
# logger.debug(f"Retrieved documents: {[doc.page_content for doc in docs[:1]]}")
|
163 |
-
|
164 |
-
loop = asyncio.get_event_loop()
|
165 |
-
|
166 |
-
answer = await asyncio.wait_for(
|
167 |
-
# qa_chain.run(prompt, callbacks=[timeout_callback]),
|
168 |
-
loop.run_in_executor(None, qa_chain.run, query.question),
|
169 |
-
timeout=360
|
170 |
-
)
|
171 |
-
|
172 |
-
if not answer:
|
173 |
-
raise ValueError("Empty answer returned from model")
|
174 |
-
|
175 |
-
if 'Answer:' in answer:
|
176 |
-
response_text = answer.split('Answer:')[-1].strip()
|
177 |
-
elif 'الإجابة:' in answer:
|
178 |
-
response_text = answer.split('الإجابة:')[-1].strip()
|
179 |
else:
|
180 |
-
response_text =
|
181 |
|
182 |
-
|
183 |
return {
|
184 |
"status": "success",
|
185 |
-
"answer":
|
186 |
"response": response_text,
|
187 |
"language": detect(query.question)
|
188 |
}
|
189 |
|
190 |
-
except TimeoutError
|
191 |
-
logger.error("Request timed out"
|
192 |
raise HTTPException(
|
193 |
status_code=status.HTTP_504_GATEWAY_TIMEOUT,
|
194 |
-
detail=
|
195 |
)
|
196 |
|
197 |
except Exception as e:
|
198 |
logger.error(f"Unexpected error: {e}", exc_info=True)
|
199 |
raise HTTPException(
|
200 |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
201 |
-
detail=
|
202 |
)
|
203 |
|
204 |
# === ENTRYPOINT === #
|
@@ -208,6 +359,6 @@ if __name__ == "__main__":
|
|
208 |
exit(0)
|
209 |
|
210 |
signal.signal(signal.SIGINT, handle_exit)
|
211 |
-
import uvicorn
|
212 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
213 |
|
|
|
|
1 |
+
# import torch
|
2 |
+
# import asyncio
|
3 |
+
# import logging
|
4 |
+
# import signal
|
5 |
+
# import uvicorn
|
6 |
+
# import os
|
7 |
+
|
8 |
+
# from fastapi import FastAPI, Request, HTTPException, status
|
9 |
+
# from pydantic import BaseModel, Field
|
10 |
+
# from langdetect import detect
|
11 |
+
|
12 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
|
13 |
+
# from langchain.vectorstores import Qdrant
|
14 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
# from langchain.chains import RetrievalQA
|
16 |
+
# from langchain.llms import HuggingFacePipeline
|
17 |
+
# from qdrant_client import QdrantClient
|
18 |
+
# from langchain.callbacks.base import BaseCallbackHandler
|
19 |
+
# from huggingface_hub import hf_hub_download
|
20 |
+
# from contextlib import asynccontextmanager
|
21 |
+
|
22 |
+
# # Get environment variables
|
23 |
+
# QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
24 |
+
# QDRANT_URL = os.getenv("QDRANT_URL")
|
25 |
+
# COLLECTION_NAME = "arabic_rag_collection"
|
26 |
+
# QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
|
27 |
+
# QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")
|
28 |
+
|
29 |
+
# # === LOGGING === #
|
30 |
+
# logging.basicConfig(level=logging.DEBUG)
|
31 |
+
# logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
# # Load model and tokenizer
|
34 |
+
# model_name = "FreedomIntelligence/Apollo-7B"
|
35 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
37 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
38 |
+
|
39 |
+
# # Connect to Qdrant + embedding
|
40 |
+
# embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
41 |
+
# qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
42 |
+
|
43 |
+
# vector_store = Qdrant(
|
44 |
+
# client=qdrant_client,
|
45 |
+
# collection_name=COLLECTION_NAME,
|
46 |
+
# embeddings=embedding
|
47 |
+
# )
|
48 |
+
|
49 |
+
# # Generation settings
|
50 |
+
# generation_config = GenerationConfig(
|
51 |
+
# max_new_tokens=150,
|
52 |
+
# temperature=0.2,
|
53 |
+
# top_k=20,
|
54 |
+
# do_sample=True,
|
55 |
+
# top_p=0.7,
|
56 |
+
# repetition_penalty=1.3,
|
57 |
+
# )
|
58 |
+
|
59 |
+
# # Text generation pipeline
|
60 |
+
# llm_pipeline = pipeline(
|
61 |
+
# model=model,
|
62 |
+
# tokenizer=tokenizer,
|
63 |
+
# task="text-generation",
|
64 |
+
# generation_config=generation_config,
|
65 |
+
# device=model.device.index if model.device.type == "cuda" else -1
|
66 |
+
# )
|
67 |
+
|
68 |
+
# llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
69 |
+
|
70 |
+
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
71 |
+
|
72 |
+
# # Set up RAG QA chain
|
73 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
74 |
+
# llm=llm,
|
75 |
+
# retriever=retriever,
|
76 |
+
# chain_type="stuff"
|
77 |
+
# )
|
78 |
+
|
79 |
+
# # FastAPI setup
|
80 |
+
# app = FastAPI(title="Apollo RAG Medical Chatbot")
|
81 |
+
|
82 |
+
# class Query(BaseModel):
|
83 |
+
# question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
|
84 |
+
|
85 |
+
# class TimeoutCallback(BaseCallbackHandler):
|
86 |
+
# def __init__(self, timeout_seconds: int = 60):
|
87 |
+
# self.timeout_seconds = timeout_seconds
|
88 |
+
# self.start_time = None
|
89 |
+
|
90 |
+
# async def on_llm_start(self, *args, **kwargs):
|
91 |
+
# self.start_time = asyncio.get_event_loop().time()
|
92 |
+
|
93 |
+
# async def on_llm_new_token(self, *args, **kwargs):
|
94 |
+
# if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
|
95 |
+
# raise TimeoutError("LLM processing timeout")
|
96 |
+
|
97 |
+
# # Prompt template
|
98 |
+
# # def generate_prompt(question: str) -> str:
|
99 |
+
# # lang = detect(question)
|
100 |
+
# # if lang == "ar":
|
101 |
+
# # return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
|
102 |
+
# # وتأكد من ان:
|
103 |
+
# # - عدم تكرار أي نقطة أو عبارة أو كلمة
|
104 |
+
# # - وضوح وسلاسة كل نقطة
|
105 |
+
# # - تجنب الحشو والعبارات الزائدة
|
106 |
+
# # السؤال: {question}
|
107 |
+
# # الإجابة:"""
|
108 |
+
# # else:
|
109 |
+
# # return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If the context lacks information, rely on prior medical knowledge.
|
110 |
+
# # Question: {question}
|
111 |
+
# # Answer:"""
|
112 |
+
|
113 |
+
|
114 |
+
# def generate_prompt(question: str) -> str:
|
115 |
+
# lang = detect(question)
|
116 |
+
# if lang == "ar":
|
117 |
+
# return (
|
118 |
+
# "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
|
119 |
+
# "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
|
120 |
+
# "- وضوح وسلاسة كل نقطة\n"
|
121 |
+
# "- تجنب الحشو والعبارات الزائدة\n"
|
122 |
+
# f"\nالسؤال: {question}\nالإجابة:"
|
123 |
+
# )
|
124 |
+
# else:
|
125 |
+
# return (
|
126 |
+
# "Answer the following medical question in clear English with a detailed, non-redundant response. "
|
127 |
+
# "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
|
128 |
+
# "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
|
129 |
+
# "in concise and distinct bullet points:\n"
|
130 |
+
# f"Question: {question}\nAnswer:"
|
131 |
+
# )
|
132 |
+
|
133 |
+
# # Input schema
|
134 |
+
# # class ChatRequest(BaseModel):
|
135 |
+
# # message: str
|
136 |
+
|
137 |
+
# # # Output endpoint
|
138 |
+
# # @app.post("/chat")
|
139 |
+
# # def chat_rag(req: ChatRequest):
|
140 |
+
# # prompt = generate_prompt(req.message)
|
141 |
+
# # response = qa_chain.run(prompt)
|
142 |
+
# # return {"response": response}
|
143 |
+
|
144 |
+
|
145 |
+
# # === ROUTES === #
|
146 |
+
# @app.get("/")
|
147 |
+
# async def root():
|
148 |
+
# return {"message": "Medical QA API is running!"}
|
149 |
+
|
150 |
+
# @app.post("/ask")
|
151 |
+
# async def ask(query: Query):
|
152 |
+
# try:
|
153 |
+
# logger.debug(f"Received question: {query.question}")
|
154 |
+
# prompt = generate_prompt(query.question)
|
155 |
+
# timeout_callback = TimeoutCallback(timeout_seconds=60)
|
156 |
+
|
157 |
+
|
158 |
+
# # docs = retriever.get_relevant_documents(query.question)
|
159 |
+
# # if not docs:
|
160 |
+
# # logger.warning("No documents retrieved from Qdrant for the question.")
|
161 |
+
# # else:
|
162 |
+
# # logger.debug(f"Retrieved documents: {[doc.page_content for doc in docs[:1]]}")
|
163 |
+
|
164 |
+
# loop = asyncio.get_event_loop()
|
165 |
+
|
166 |
+
# answer = await asyncio.wait_for(
|
167 |
+
# # qa_chain.run(prompt, callbacks=[timeout_callback]),
|
168 |
+
# loop.run_in_executor(None, qa_chain.run, query.question),
|
169 |
+
# timeout=360
|
170 |
+
# )
|
171 |
+
|
172 |
+
# if not answer:
|
173 |
+
# raise ValueError("Empty answer returned from model")
|
174 |
+
|
175 |
+
# if 'Answer:' in answer:
|
176 |
+
# response_text = answer.split('Answer:')[-1].strip()
|
177 |
+
# elif 'الإجابة:' in answer:
|
178 |
+
# response_text = answer.split('الإجابة:')[-1].strip()
|
179 |
+
# else:
|
180 |
+
# response_text = answer.strip()
|
181 |
+
|
182 |
+
|
183 |
+
# return {
|
184 |
+
# "status": "success",
|
185 |
+
# "answer": answer,
|
186 |
+
# "response": response_text,
|
187 |
+
# "language": detect(query.question)
|
188 |
+
# }
|
189 |
+
|
190 |
+
# except TimeoutError as te:
|
191 |
+
# logger.error("Request timed out", exc_info=True)
|
192 |
+
# raise HTTPException(
|
193 |
+
# status_code=status.HTTP_504_GATEWAY_TIMEOUT,
|
194 |
+
# detail={"status": "error", "message": "Request timed out", "error": str(te)}
|
195 |
+
# )
|
196 |
+
|
197 |
+
# except Exception as e:
|
198 |
+
# logger.error(f"Unexpected error: {e}", exc_info=True)
|
199 |
+
# raise HTTPException(
|
200 |
+
# status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
201 |
+
# detail={"status": "error", "message": "Internal server error", "error": str(e)}
|
202 |
+
# )
|
203 |
+
|
204 |
+
# # === ENTRYPOINT === #
|
205 |
+
# if __name__ == "__main__":
|
206 |
+
# def handle_exit(signum, frame):
|
207 |
+
# print("Shutting down gracefully...")
|
208 |
+
# exit(0)
|
209 |
+
|
210 |
+
# signal.signal(signal.SIGINT, handle_exit)
|
211 |
+
# import uvicorn
|
212 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
import torch
|
217 |
import asyncio
|
218 |
import logging
|
219 |
import signal
|
220 |
import uvicorn
|
221 |
+
import os
|
222 |
|
223 |
from fastapi import FastAPI, Request, HTTPException, status
|
224 |
from pydantic import BaseModel, Field
|
225 |
from langdetect import detect
|
226 |
|
227 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
|
228 |
+
from langchain_community.vectorstores import Qdrant
|
229 |
from langchain.embeddings import HuggingFaceEmbeddings
|
230 |
+
from langchain_community.llms import HuggingFacePipeline
|
|
|
231 |
from qdrant_client import QdrantClient
|
232 |
+
from langchain_core.runnables import RunnableMap
|
233 |
from huggingface_hub import hf_hub_download
|
|
|
234 |
|
235 |
+
# === ENVIRONMENT SETUP === #
|
236 |
+
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "your_fallback_api_key")
|
237 |
+
QDRANT_URL = os.getenv("QDRANT_URL", "your_fallback_qdrant_url")
|
238 |
COLLECTION_NAME = "arabic_rag_collection"
|
|
|
|
|
239 |
|
240 |
# === LOGGING === #
|
241 |
+
logging.basicConfig(level=logging.INFO)
|
242 |
logger = logging.getLogger(__name__)
|
243 |
|
244 |
+
# === MODEL SETUP === #
|
245 |
model_name = "FreedomIntelligence/Apollo-7B"
|
246 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
247 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
248 |
tokenizer.pad_token = tokenizer.eos_token
|
249 |
|
250 |
+
# === GENERATION CONFIG === #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
generation_config = GenerationConfig(
|
252 |
max_new_tokens=150,
|
253 |
temperature=0.2,
|
|
|
257 |
repetition_penalty=1.3,
|
258 |
)
|
259 |
|
|
|
260 |
llm_pipeline = pipeline(
|
261 |
model=model,
|
262 |
tokenizer=tokenizer,
|
|
|
264 |
generation_config=generation_config,
|
265 |
device=model.device.index if model.device.type == "cuda" else -1
|
266 |
)
|
|
|
267 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
268 |
|
269 |
+
# === EMBEDDING + VECTOR STORE === #
|
270 |
+
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
271 |
+
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
272 |
|
273 |
+
vector_store = Qdrant(
|
274 |
+
client=qdrant_client,
|
275 |
+
collection_name=COLLECTION_NAME,
|
276 |
+
embeddings=embedding
|
|
|
277 |
)
|
278 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
279 |
|
280 |
+
# === PROMPT FUNCTION === #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
def generate_prompt(question: str) -> str:
|
282 |
lang = detect(question)
|
283 |
if lang == "ar":
|
|
|
291 |
else:
|
292 |
return (
|
293 |
"Answer the following medical question in clear English with a detailed, non-redundant response. "
|
294 |
+
"Do not repeat ideas, phrases, or restate the question. If the context lacks relevant "
|
295 |
+
"information, rely on prior medical knowledge.\n"
|
|
|
296 |
f"Question: {question}\nAnswer:"
|
297 |
)
|
|
|
|
|
|
|
|
|
298 |
|
299 |
+
# === FASTAPI SETUP === #
|
300 |
+
app = FastAPI(title="Apollo RAG Medical Chatbot")
|
|
|
|
|
|
|
|
|
301 |
|
302 |
+
class Query(BaseModel):
|
303 |
+
question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
|
304 |
+
|
305 |
+
# === RAG PIPELINE === #
|
306 |
+
async def async_chain(question: str):
|
307 |
+
prompt = generate_prompt(question)
|
308 |
+
docs = await retriever.aget_relevant_documents(question)
|
309 |
+
if not docs:
|
310 |
+
logger.warning("No relevant documents found in Qdrant.")
|
311 |
+
context = "\n".join([doc.page_content for doc in docs])
|
312 |
+
full_prompt = f"{context}\n\n{prompt}"
|
313 |
+
logger.debug(f"Prompt: {full_prompt}")
|
314 |
+
response = llm.invoke(full_prompt)
|
315 |
+
return response
|
316 |
|
317 |
# === ROUTES === #
|
318 |
@app.get("/")
|
|
|
322 |
@app.post("/ask")
|
323 |
async def ask(query: Query):
|
324 |
try:
|
325 |
+
response = await asyncio.wait_for(async_chain(query.question), timeout=60)
|
|
|
|
|
|
|
326 |
|
327 |
+
if 'Answer:' in response:
|
328 |
+
response_text = response.split('Answer:')[-1].strip()
|
329 |
+
elif 'الإجابة:' in response:
|
330 |
+
response_text = response.split('الإجابة:')[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
else:
|
332 |
+
response_text = response.strip()
|
333 |
|
|
|
334 |
return {
|
335 |
"status": "success",
|
336 |
+
"answer": response,
|
337 |
"response": response_text,
|
338 |
"language": detect(query.question)
|
339 |
}
|
340 |
|
341 |
+
except asyncio.TimeoutError:
|
342 |
+
logger.error("Request timed out")
|
343 |
raise HTTPException(
|
344 |
status_code=status.HTTP_504_GATEWAY_TIMEOUT,
|
345 |
+
detail="Request timed out"
|
346 |
)
|
347 |
|
348 |
except Exception as e:
|
349 |
logger.error(f"Unexpected error: {e}", exc_info=True)
|
350 |
raise HTTPException(
|
351 |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
352 |
+
detail=f"Internal server error: {e}"
|
353 |
)
|
354 |
|
355 |
# === ENTRYPOINT === #
|
|
|
359 |
exit(0)
|
360 |
|
361 |
signal.signal(signal.SIGINT, handle_exit)
|
|
|
362 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
363 |
|
364 |
+
|