Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -223,9 +223,9 @@ logging.basicConfig(level=logging.INFO)
|
|
223 |
logger = logging.getLogger(__name__)
|
224 |
|
225 |
# Load model and tokenizer
|
226 |
-
model_name = "FreedomIntelligence/Apollo-7B"
|
227 |
# model_name = "emilyalsentzer/Bio_ClinicalBERT"
|
228 |
-
|
229 |
|
230 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
231 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
@@ -300,45 +300,48 @@ def read_root():
|
|
300 |
return {"message": "Apollo Medical Chatbot API is running"}
|
301 |
|
302 |
|
303 |
-
# @app.post("/ask")
|
304 |
-
# async def chat_fn(query: Query):
|
305 |
-
|
306 |
-
# message = query.message
|
307 |
-
# logger.info(f"Received message: {message}")
|
308 |
-
|
309 |
-
# prompt = generate_prompt(message)
|
310 |
-
|
311 |
-
# # Run blocking inference in thread
|
312 |
-
# loop = asyncio.get_event_loop()
|
313 |
-
# response = await loop.run_in_executor(executor,
|
314 |
-
# lambda: pipe(prompt, max_new_tokens=512, temperature=0.7, do_sample=True, top_p=0.9)[0]['generated_text'])
|
315 |
-
|
316 |
-
# # Parse answer
|
317 |
-
# answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
|
318 |
-
# return {"Answer": answer}
|
319 |
-
|
320 |
@app.post("/ask")
|
321 |
async def chat_fn(query: Query):
|
|
|
322 |
message = query.message
|
323 |
logger.info(f"Received message: {message}")
|
324 |
|
325 |
prompt = generate_prompt(message)
|
326 |
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
|
336 |
-
|
337 |
-
|
338 |
|
339 |
-
|
340 |
-
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
223 |
logger = logging.getLogger(__name__)
|
224 |
|
225 |
# Load model and tokenizer
|
226 |
+
# model_name = "FreedomIntelligence/Apollo-7B"
|
227 |
# model_name = "emilyalsentzer/Bio_ClinicalBERT"
|
228 |
+
model_name = "FreedomIntelligence/Apollo-2B"
|
229 |
|
230 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
231 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
300 |
return {"message": "Apollo Medical Chatbot API is running"}
|
301 |
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
@app.post("/ask")
|
304 |
async def chat_fn(query: Query):
|
305 |
+
|
306 |
message = query.message
|
307 |
logger.info(f"Received message: {message}")
|
308 |
|
309 |
prompt = generate_prompt(message)
|
310 |
|
311 |
+
# Run blocking inference in thread
|
312 |
+
loop = asyncio.get_event_loop()
|
313 |
+
response = await loop.run_in_executor(executor,
|
314 |
+
lambda: pipe(prompt, max_new_tokens=150, temperature=0.7, do_sample=True, top_p=0.9)[0]['generated_text'])
|
315 |
+
|
316 |
+
# Parse answer
|
317 |
+
answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
|
318 |
+
return {
|
319 |
+
"response": response,
|
320 |
+
"Answer": answer
|
321 |
+
}
|
322 |
+
|
323 |
+
# @app.post("/ask")
|
324 |
+
# async def chat_fn(query: Query):
|
325 |
+
# message = query.message
|
326 |
+
# logger.info(f"Received message: {message}")
|
327 |
+
|
328 |
+
# prompt = generate_prompt(message)
|
329 |
+
|
330 |
+
# try:
|
331 |
+
# start_time = time.time()
|
332 |
|
333 |
+
# loop = asyncio.get_event_loop()
|
334 |
+
# response = await loop.run_in_executor(
|
335 |
+
# executor,
|
336 |
+
# lambda: pipe(prompt, max_new_tokens=150, temperature=0.6, do_sample=True, top_p=0.8)[0]['generated_text']
|
337 |
+
# )
|
338 |
|
339 |
+
# duration = time.time() - start_time
|
340 |
+
# logger.info(f"Model inference completed in {duration:.2f} seconds")
|
341 |
|
342 |
+
# logger.info(f"Generated answer: {answer}")
|
343 |
+
# return {"Answer": answer}
|
344 |
|
345 |
+
# except Exception as e:
|
346 |
+
# logger.error(f"Inference failed: {str(e)}")
|
347 |
+
# raise HTTPException(status_code=500, detail="Model inference TimeOut failed.")
|