|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
from langdetect import detect |
|
from transformers import pipeline |
|
from qdrant_client import QdrantClient |
|
from qdrant_client.models import VectorParams, Distance |
|
from langchain.llms import HuggingFacePipeline |
|
from langchain.chains import RetrievalQA |
|
from langchain.vectorstores import Qdrant |
|
from transformers import GenerationConfig, FastLanguageModel |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
|
|
|
|
model_name = "FreedomIntelligence/Apollo-7B" |
|
|
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_name, |
|
max_seq_length=2048, |
|
dtype=torch.float16, |
|
load_in_4bit=True |
|
) |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
qdrant_client = QdrantClient(url="https://your-qdrant-instance.com") |
|
vector_size = 768 |
|
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1") |
|
|
|
qdrant_vectorstore = Qdrant( |
|
client=qdrant_client, |
|
collection_name="arabic_rag_collection", |
|
embeddings=embedding |
|
) |
|
|
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=150, |
|
temperature=0.2, |
|
top_k=20, |
|
do_sample=True, |
|
top_p=0.7, |
|
repetition_penalty=1.3, |
|
) |
|
|
|
|
|
llm_pipeline = pipeline( |
|
model=model, |
|
tokenizer=tokenizer, |
|
task="text-generation", |
|
generation_config=generation_config, |
|
) |
|
|
|
llm = HuggingFacePipeline(pipeline=llm_pipeline) |
|
|
|
|
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
retriever=qdrant_vectorstore.as_retriever(search_kwargs={"k": 3}), |
|
chain_type="stuff" |
|
) |
|
|
|
|
|
def generate_prompt(question): |
|
lang = detect(question) |
|
if lang == "ar": |
|
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. |
|
وتأكد من ان: |
|
- عدم تكرار أي نقطة أو عبارة أو كلمة |
|
- وضوح وسلاسة كل نقطة |
|
- تجنب الحشو والعبارات الزائدة- |
|
|
|
السؤال: {question} |
|
الإجابة: |
|
""" |
|
else: |
|
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points: |
|
Question: {question} |
|
Answer:""" |
|
|
|
|
|
def medical_chatbot(question): |
|
formatted_question = generate_prompt(question) |
|
answer = qa_chain.run(formatted_question) |
|
return answer |
|
|
|
|
|
iface = gr.Interface( |
|
fn=medical_chatbot, |
|
inputs=gr.Textbox(label="Ask a Medical Question", placeholder="Type your question here..."), |
|
outputs=gr.Textbox(label="Answer", interactive=False), |
|
title="Medical Chatbot", |
|
description="Ask medical questions and get detailed answers in Arabic or English.", |
|
theme="compact" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |