khalednabawi11's picture
Update app.py
1e8aaad verified
raw
history blame
5.17 kB
# import gradio as gr
# from huggingface_hub import InferenceClient
# import os
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# token = os.getenv("HF_TOKEN")
# client = InferenceClient("BioMistral/BioMistral-7B", token=token)
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
from langdetect import detect
from transformers import pipeline
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.vectorstores import Qdrant
from transformers import GenerationConfig, FastLanguageModel
from langchain.embeddings import HuggingFaceEmbeddings
# Define model path
model_name = "FreedomIntelligence/Apollo-7B"
# Load model with Unsloth (4-bit QLoRA)
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=2048,
dtype=torch.float16,
load_in_4bit=True
)
# Enable padding token if missing
tokenizer.pad_token = tokenizer.eos_token
# Set up Qdrant vector store
qdrant_client = QdrantClient(url="https://your-qdrant-instance.com")
vector_size = 768
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
qdrant_vectorstore = Qdrant(
client=qdrant_client,
collection_name="arabic_rag_collection",
embeddings=embedding
)
# Generation config
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.2,
top_k=20,
do_sample=True,
top_p=0.7,
repetition_penalty=1.3,
)
# Set up HuggingFace Pipeline
llm_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
generation_config=generation_config,
)
llm = HuggingFacePipeline(pipeline=llm_pipeline)
# Set up QA Chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=qdrant_vectorstore.as_retriever(search_kwargs={"k": 3}),
chain_type="stuff"
)
# Generate prompt based on language
def generate_prompt(question):
lang = detect(question)
if lang == "ar":
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة-
السؤال: {question}
الإجابة:
"""
else:
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
Question: {question}
Answer:"""
# Define Gradio interface function
def medical_chatbot(question):
formatted_question = generate_prompt(question)
answer = qa_chain.run(formatted_question)
return answer
# Set up Gradio interface
iface = gr.Interface(
fn=medical_chatbot,
inputs=gr.Textbox(label="Ask a Medical Question", placeholder="Type your question here..."),
outputs=gr.Textbox(label="Answer", interactive=False),
title="Medical Chatbot",
description="Ask medical questions and get detailed answers in Arabic or English.",
theme="compact"
)
# Launch Gradio interface
if __name__ == "__main__":
iface.launch()