Update app.py
Browse files
app.py
CHANGED
@@ -75,25 +75,28 @@ from qdrant_client.models import VectorParams, Distance
|
|
75 |
from langchain.llms import HuggingFacePipeline
|
76 |
from langchain.chains import RetrievalQA
|
77 |
from langchain.vectorstores import Qdrant
|
78 |
-
from transformers import GenerationConfig,
|
79 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# Define model path
|
82 |
model_name = "FreedomIntelligence/Apollo-7B"
|
83 |
|
84 |
-
# Load model
|
85 |
-
|
86 |
-
|
87 |
-
max_seq_length=2048,
|
88 |
-
dtype=torch.float16,
|
89 |
-
load_in_4bit=True
|
90 |
-
)
|
91 |
|
92 |
# Enable padding token if missing
|
93 |
tokenizer.pad_token = tokenizer.eos_token
|
94 |
|
95 |
# Set up Qdrant vector store
|
96 |
-
qdrant_client = QdrantClient(url=
|
97 |
vector_size = 768
|
98 |
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
99 |
|
@@ -164,6 +167,22 @@ iface = gr.Interface(
|
|
164 |
theme="compact"
|
165 |
)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
# Launch Gradio interface
|
168 |
if __name__ == "__main__":
|
169 |
iface.launch()
|
|
|
75 |
from langchain.llms import HuggingFacePipeline
|
76 |
from langchain.chains import RetrievalQA
|
77 |
from langchain.vectorstores import Qdrant
|
78 |
+
from transformers import GenerationConfig, AutoTokenizer, AutoModelForCausalLM
|
79 |
from langchain.embeddings import HuggingFaceEmbeddings
|
80 |
+
import os
|
81 |
+
|
82 |
+
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
|
83 |
+
QDRANT_URL = os.getenv("QDRANT_URL")
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
|
88 |
# Define model path
|
89 |
model_name = "FreedomIntelligence/Apollo-7B"
|
90 |
|
91 |
+
# Load model directly
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
93 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# Enable padding token if missing
|
96 |
tokenizer.pad_token = tokenizer.eos_token
|
97 |
|
98 |
# Set up Qdrant vector store
|
99 |
+
qdrant_client = QdrantClient(url=QDRANT_URL, api_key = QDRANT_API_KEY)
|
100 |
vector_size = 768
|
101 |
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
102 |
|
|
|
167 |
theme="compact"
|
168 |
)
|
169 |
|
170 |
+
# demo = gr.ChatInterface(
|
171 |
+
# respond,
|
172 |
+
# additional_inputs=[
|
173 |
+
# gr.Textbox(value="You are a Medical Chatbot.", label="System message"),
|
174 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
175 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
176 |
+
# gr.Slider(
|
177 |
+
# minimum=0.1,
|
178 |
+
# maximum=1.0,
|
179 |
+
# value=0.95,
|
180 |
+
# step=0.05,
|
181 |
+
# label="Top-p (nucleus sampling)",
|
182 |
+
# ),
|
183 |
+
# ],
|
184 |
+
# )
|
185 |
+
|
186 |
# Launch Gradio interface
|
187 |
if __name__ == "__main__":
|
188 |
iface.launch()
|