Spaces:
Running
on
Zero
Running
on
Zero
Add DeepSeek-OCR Gradio application files
Browse files- README.md +34 -5
- app.py +141 -0
- requirements.txt +15 -0
README.md
CHANGED
@@ -1,14 +1,43 @@
|
|
1 |
---
|
2 |
title: DeepSeek OCR Demo
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: DeepSeek OCR Demo
|
3 |
+
emoji: 🖼
|
4 |
+
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: An interactive demo for the DeepSeek-OCR model.
|
12 |
---
|
13 |
|
14 |
+
# DeepSeek-OCR Document Recognition
|
15 |
+
|
16 |
+
This Space uses the DeepSeek-OCR model for document text recognition and extraction.
|
17 |
+
|
18 |
+
## Features
|
19 |
+
|
20 |
+
- Multiple model size options (Tiny to Large)
|
21 |
+
- Free OCR and Markdown conversion
|
22 |
+
- Support for various document types
|
23 |
+
- Powered by ZeroGPU for efficient inference
|
24 |
+
|
25 |
+
## Usage
|
26 |
+
|
27 |
+
1. Upload an image containing text
|
28 |
+
2. Select model size (Gundam recommended for documents)
|
29 |
+
3. Choose task type
|
30 |
+
4. Click "Process Image"
|
31 |
+
|
32 |
+
## Model Sizes
|
33 |
+
|
34 |
+
- **Tiny**: 512x512, fastest
|
35 |
+
- **Small**: 640x640, good balance
|
36 |
+
- **Base**: 1024x1024, high quality
|
37 |
+
- **Large**: 1280x1280, best quality
|
38 |
+
- **Gundam**: Optimized for documents with crop mode
|
39 |
+
|
40 |
+
## Credits
|
41 |
+
|
42 |
+
Model: [deepseek-ai/DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR)
|
43 |
+
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
import spaces
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
# Load model and tokenizer
|
9 |
+
model_name = "deepseek-ai/DeepSeek-OCR"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
+
model = AutoModel.from_pretrained(
|
12 |
+
model_name,
|
13 |
+
_attn_implementation="flash_attention_2",
|
14 |
+
trust_remote_code=True,
|
15 |
+
use_safetensors=True,
|
16 |
+
)
|
17 |
+
model = model.eval().to(torch.bfloat16)
|
18 |
+
|
19 |
+
|
20 |
+
@spaces.GPU
|
21 |
+
def process_image(image, model_size, task_type):
|
22 |
+
"""
|
23 |
+
Process image with DeepSeek-OCR
|
24 |
+
|
25 |
+
Args:
|
26 |
+
image: PIL Image or file path
|
27 |
+
model_size: Model size configuration
|
28 |
+
task_type: OCR task type
|
29 |
+
"""
|
30 |
+
# Create temporary directory for output
|
31 |
+
with tempfile.TemporaryDirectory() as output_path:
|
32 |
+
# Set prompt based on task type
|
33 |
+
if task_type == "Free OCR":
|
34 |
+
prompt = "<image>\nFree OCR. "
|
35 |
+
elif task_type == "Convert to Markdown":
|
36 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
|
37 |
+
elif task_type == "Extract Text":
|
38 |
+
prompt = "<image>\nExtract all text from the image. "
|
39 |
+
else:
|
40 |
+
prompt = "<image>\nFree OCR. "
|
41 |
+
|
42 |
+
# Save uploaded image temporarily
|
43 |
+
temp_image_path = os.path.join(output_path, "temp_image.jpg")
|
44 |
+
image.save(temp_image_path)
|
45 |
+
|
46 |
+
# Configure model size parameters
|
47 |
+
size_configs = {
|
48 |
+
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
49 |
+
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
50 |
+
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
51 |
+
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
52 |
+
"Gundam (Recommended)": {
|
53 |
+
"base_size": 1024,
|
54 |
+
"image_size": 640,
|
55 |
+
"crop_mode": True,
|
56 |
+
},
|
57 |
+
}
|
58 |
+
|
59 |
+
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
60 |
+
|
61 |
+
# Run inference
|
62 |
+
result = model.infer(
|
63 |
+
tokenizer,
|
64 |
+
prompt=prompt,
|
65 |
+
image_file=temp_image_path,
|
66 |
+
output_path=output_path,
|
67 |
+
base_size=config["base_size"],
|
68 |
+
image_size=config["image_size"],
|
69 |
+
crop_mode=config["crop_mode"],
|
70 |
+
save_results=True,
|
71 |
+
test_compress=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
return result
|
75 |
+
|
76 |
+
|
77 |
+
# Create Gradio interface
|
78 |
+
with gr.Blocks(title="DeepSeek-OCR") as demo:
|
79 |
+
gr.Markdown(
|
80 |
+
"""
|
81 |
+
# DeepSeek-OCR Document Recognition
|
82 |
+
|
83 |
+
Upload an image to extract text using DeepSeek-OCR model.
|
84 |
+
Supports various document types and handwriting recognition.
|
85 |
+
|
86 |
+
**Model Sizes:**
|
87 |
+
- **Tiny**: Fastest, lower accuracy (512x512)
|
88 |
+
- **Small**: Fast, good accuracy (640x640)
|
89 |
+
- **Base**: Balanced performance (1024x1024)
|
90 |
+
- **Large**: Best accuracy, slower (1280x1280)
|
91 |
+
- **Gundam (Recommended)**: Optimized for documents (1024 base, 640 image, crop mode)
|
92 |
+
"""
|
93 |
+
)
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column():
|
97 |
+
image_input = gr.Image(
|
98 |
+
type="pil", label="Upload Image", sources=["upload", "clipboard"]
|
99 |
+
)
|
100 |
+
|
101 |
+
model_size = gr.Dropdown(
|
102 |
+
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
103 |
+
value="Gundam (Recommended)",
|
104 |
+
label="Model Size",
|
105 |
+
)
|
106 |
+
|
107 |
+
task_type = gr.Dropdown(
|
108 |
+
choices=["Free OCR", "Convert to Markdown", "Extract Text"],
|
109 |
+
value="Convert to Markdown",
|
110 |
+
label="Task Type",
|
111 |
+
)
|
112 |
+
|
113 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
114 |
+
|
115 |
+
with gr.Column():
|
116 |
+
output_text = gr.Textbox(
|
117 |
+
label="OCR Result", lines=20, show_copy_button=True
|
118 |
+
)
|
119 |
+
|
120 |
+
# Examples
|
121 |
+
gr.Examples(
|
122 |
+
examples=[
|
123 |
+
["examples/math.png", "Gundam (Recommended)", "Convert to Markdown"],
|
124 |
+
["examples/receipt.jpg", "Base", "Free OCR"],
|
125 |
+
],
|
126 |
+
inputs=[image_input, model_size, task_type],
|
127 |
+
outputs=output_text,
|
128 |
+
fn=process_image,
|
129 |
+
cache_examples=False,
|
130 |
+
)
|
131 |
+
|
132 |
+
submit_btn.click(
|
133 |
+
fn=process_image,
|
134 |
+
inputs=[image_input, model_size, task_type],
|
135 |
+
outputs=output_text,
|
136 |
+
)
|
137 |
+
|
138 |
+
# Launch the app
|
139 |
+
if __name__ == "__main__":
|
140 |
+
demo.queue(max_size=20)
|
141 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.6.0
|
2 |
+
transformers==4.46.3
|
3 |
+
tokenizers==0.20.3
|
4 |
+
einops
|
5 |
+
addict
|
6 |
+
easydict
|
7 |
+
gradio>=4.0.0
|
8 |
+
spaces>=0.20.0
|
9 |
+
Pillow>=10.0.0
|
10 |
+
safetensors>=0.4.0
|
11 |
+
accelerate>=0.24.0
|
12 |
+
sentencepiece>=0.1.99
|
13 |
+
protobuf>=3.20.0
|
14 |
+
torchvision
|
15 |
+
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|