File size: 16,512 Bytes
f38d876
 
 
 
 
234dafc
f38d876
4223edb
6e12229
 
4223edb
 
6e12229
4c2f748
c9044fd
f38d876
 
 
 
234dafc
f38d876
 
 
 
c9044fd
 
 
 
 
 
 
4223edb
f38d876
 
 
 
 
c9044fd
f38d876
 
 
 
c9044fd
f38d876
c9044fd
f38d876
c9044fd
f38d876
 
 
 
4223edb
f38d876
 
 
 
 
 
 
1613a6f
2b56bba
f38d876
 
 
c9044fd
f38d876
 
4223edb
c9044fd
f38d876
 
c9044fd
 
9a618da
c9044fd
 
 
 
 
9a618da
c9044fd
4223edb
c9044fd
 
 
 
9a618da
c9044fd
 
 
 
 
 
 
9a618da
c9044fd
 
 
9a618da
 
c9044fd
4223edb
c9044fd
 
 
9a618da
 
 
c9044fd
9a618da
c9044fd
 
9a618da
c9044fd
4223edb
 
c9044fd
 
 
 
 
 
 
9a618da
c9044fd
 
 
 
4223edb
234dafc
c9044fd
f38d876
234dafc
4223edb
c9044fd
6e12229
234dafc
f38d876
 
4223edb
f38d876
 
 
4223edb
f38d876
 
4223edb
c9044fd
6e12229
234dafc
f38d876
4223edb
 
 
 
1613a6f
f38d876
4223edb
f38d876
 
 
4223edb
f38d876
4223edb
f38d876
4223edb
 
c9044fd
6e12229
234dafc
4223edb
 
 
f38d876
9a618da
c9044fd
f38d876
4223edb
 
 
 
f38d876
234dafc
 
4223edb
 
 
f38d876
4223edb
 
 
 
 
 
f38d876
4223edb
 
 
 
 
 
f38d876
4223edb
 
 
 
 
 
f38d876
6e12229
f38d876
c9044fd
72b741e
6e12229
c9044fd
4223edb
 
 
 
 
2b56bba
1613a6f
9a618da
4223edb
1613a6f
 
c9044fd
1613a6f
234dafc
4223edb
 
234dafc
f38d876
 
 
 
234dafc
c9044fd
4223edb
c9044fd
6e12229
234dafc
c9044fd
234dafc
c9044fd
 
 
 
 
 
 
 
 
4223edb
f38d876
c9044fd
 
 
 
f38d876
4223edb
9a618da
4223edb
c9044fd
 
 
 
4223edb
f38d876
c9044fd
 
72b741e
c9044fd
 
4223edb
234dafc
f38d876
72b741e
234dafc
 
72b741e
234dafc
72b741e
 
 
 
 
 
 
234dafc
 
72b741e
 
 
 
 
 
 
234dafc
72b741e
234dafc
72b741e
 
 
4223edb
234dafc
72b741e
4223edb
 
 
 
 
 
 
234dafc
 
4223edb
 
1613a6f
4223edb
 
9a618da
4223edb
c9044fd
f38d876
 
 
 
234dafc
 
4223edb
 
1613a6f
f38d876
4223edb
f38d876
 
 
 
 
c9044fd
 
f38d876
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import gradio as gr
import os
import joblib
import torch
import numpy as np
import html # μ—¬μ „νžˆ highlighted_text_data 생성 μ‹œ html.escapeλ₯Ό μ‚¬μš©ν•  수 μžˆμœΌλ―€λ‘œ μœ μ§€
from transformers import AutoTokenizer, AutoModel, logging as hf_logging
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import plotly.graph_objects as go

# --- Global Settings and Model Loading ---
hf_logging.set_verbosity_error()

MODEL_NAME = "bert-base-uncased"
DEVICE     = "cpu"
SAVE_DIR   = "μ €μž₯μ €μž₯1"
LAYER_ID   = 4
SEED       = 0
CLF_NAME   = "linear"

CLASS_LABEL_MAP = {
    0: "World",
    1: "Sports",
    2: "Business",
    3: "Sci/Tech"
}

TOKENIZER_GLOBAL, MODEL_GLOBAL = None, None
W_GLOBAL, MU_GLOBAL, W_P_GLOBAL, B_P_GLOBAL = None, None, None, None
MODELS_LOADED_SUCCESSFULLY = False
MODEL_LOADING_ERROR_MESSAGE = ""

try:
    print("Gradio App: Initializing model loading...")
    lda_file_path = os.path.join(SAVE_DIR, f"lda_layer{LAYER_ID}_seed{SEED}.pkl")
    clf_file_path = os.path.join(SAVE_DIR, f"{CLF_NAME}_layer{LAYER_ID}_projlda_seed{SEED}.pkl")

    if not os.path.isdir(SAVE_DIR):
        raise FileNotFoundError(f"Error: Model storage directory '{SAVE_DIR}' not found.")
    if not os.path.exists(lda_file_path):
        raise FileNotFoundError(f"Error: LDA model file '{lda_file_path}' not found.")
    if not os.path.exists(clf_file_path):
        raise FileNotFoundError(f"Error: Classifier model file '{clf_file_path}' not found.")

    lda = joblib.load(lda_file_path)
    clf = joblib.load(clf_file_path)

    if hasattr(clf, "base_estimator"): clf = clf.base_estimator

    W_GLOBAL   = torch.tensor(lda.scalings_,  dtype=torch.float32, device=DEVICE)
    MU_GLOBAL  = torch.tensor(lda.xbar_,     dtype=torch.float32, device=DEVICE)
    W_P_GLOBAL = torch.tensor(clf.coef_,     dtype=torch.float32, device=DEVICE)
    B_P_GLOBAL = torch.tensor(clf.intercept_, dtype=torch.float32, device=DEVICE)

    TOKENIZER_GLOBAL = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
    MODEL_GLOBAL     = AutoModel.from_pretrained(
        MODEL_NAME, output_hidden_states=True, output_attentions=False
    ).to(DEVICE).eval()
    
    MODELS_LOADED_SUCCESSFULLY = True
    print("Gradio App: All models and data loaded successfully!")

except Exception as e:
    MODELS_LOADED_SUCCESSFULLY = False
    MODEL_LOADING_ERROR_MESSAGE = f"Critical error during model loading: {str(e)}\nPlease ensure the '{SAVE_DIR}' folder and its contents are correct."
    print(MODEL_LOADING_ERROR_MESSAGE)

# Helper function: 3D PCA Visualization using Plotly
def plot_token_pca_3d_plotly(token_embeddings_3d, tokens, scores, title="Token Embeddings 3D PCA (Colored by Importance)"):
    num_annotations = min(len(tokens), 20)
    scores_array = np.array(scores).flatten()
    text_annotations = [''] * len(tokens)
    if len(scores_array) > 0 and len(tokens) > 0:
        indices_to_annotate = np.argsort(scores_array)[-num_annotations:]
        for i in indices_to_annotate:
            if i < len(tokens):
                 text_annotations[i] = tokens[i]
    
    fig = go.Figure(data=[go.Scatter3d(
        x=token_embeddings_3d[:, 0],
        y=token_embeddings_3d[:, 1],
        z=token_embeddings_3d[:, 2],
        mode='markers+text',
        text=text_annotations,
        textfont=dict(size=9, color='#333333'),
        textposition='top center',
        marker=dict(
            size=6,
            color=scores_array,
            colorscale='RdBu', 
            reversescale=True,
            opacity=0.8,
            colorbar=dict(title='Importance', tickfont=dict(size=9), len=0.75, yanchor='middle')
        ),
        hoverinfo='text',
        hovertext=[f"Token: {t}<br>Score: {s:.3f}" for t, s in zip(tokens, scores_array)]
    )])
    
    fig.update_layout(
        title=dict(text=title, x=0.5, font=dict(size=16)),
        scene=dict(
            xaxis=dict(title=dict(text='PCA Comp 1', font=dict(size=10)), tickfont=dict(size=9), backgroundcolor="rgba(230, 230, 230, 0.8)"),
            yaxis=dict(title=dict(text='PCA Comp 2', font=dict(size=10)), tickfont=dict(size=9), backgroundcolor="rgba(230, 230, 230, 0.8)"),
            zaxis=dict(title=dict(text='PCA Comp 3', font=dict(size=10)), tickfont=dict(size=9), backgroundcolor="rgba(230, 230, 230, 0.8)"),
            bgcolor="rgba(255, 255, 255, 0.95)",
            camera_eye=dict(x=1.5, y=1.5, z=0.5)
        ),
        margin=dict(l=5, r=5, b=5, t=45),
        paper_bgcolor='rgba(0,0,0,0)'
    )
    return fig

# Helper function: Create an empty Plotly figure for placeholders
def create_empty_plotly_figure(message="N/A"):
    fig = go.Figure()
    fig.add_annotation(text=message, xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(size=12, color="grey"))
    fig.update_layout(
        xaxis={'visible': False}, 
        yaxis={'visible': False}, 
        height=300,
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)'
        )
    return fig

# --- Core Analysis Function (returns 6 items for Gradio UI) ---
def analyze_sentence_for_gradio(sentence_text, top_k_value):
    if not MODELS_LOADED_SUCCESSFULLY:
        # HTML output removed, adjust error return
        empty_df = pd.DataFrame(columns=['token', 'score'])
        empty_fig = create_empty_plotly_figure("Model Loading Failed")
        error_label_output = {"Status": "Error", "Message": "Model Loading Failed. Check logs."}
        return [], "Model Loading Failed", error_label_output, [], empty_df, empty_fig # 6 items

    try:
        tokenizer, model = TOKENIZER_GLOBAL, MODEL_GLOBAL
        W, mu, w_p, b_p = W_GLOBAL, MU_GLOBAL, W_P_GLOBAL, B_P_GLOBAL
        
        enc = tokenizer(sentence_text, return_tensors="pt", truncation=True, max_length=510, padding=True)
        input_ids, attn_mask  = enc["input_ids"].to(DEVICE), enc["attention_mask"].to(DEVICE)

        if input_ids.shape[1] == 0:
            empty_df = pd.DataFrame(columns=['token', 'score'])
            empty_fig = create_empty_plotly_figure("Invalid Input")
            error_label_output = {"Status": "Error", "Message": "Invalid input, no valid tokens."}
            return [], "Input Error", error_label_output, [], empty_df, empty_fig # 6 items

        input_embeds_detached = model.embeddings.word_embeddings(input_ids).clone().detach()
        input_embeds_for_grad = input_embeds_detached.clone().requires_grad_(True)
        
        outputs = model(inputs_embeds=input_embeds_for_grad, attention_mask=attn_mask, 
                        output_hidden_states=True, output_attentions=False)
        cls_vec = outputs.hidden_states[LAYER_ID][:, 0, :]
        
        z_projected = (cls_vec - mu) @ W
        logit_output = z_projected @ w_p.T + b_p
        probs = torch.softmax(logit_output, dim=1)
        pred_idx, pred_prob_val = torch.argmax(probs, dim=1).item(), probs[0, torch.argmax(probs, dim=1).item()].item()

        if input_embeds_for_grad.grad is not None: input_embeds_for_grad.grad.zero_()
        logit_output[0, pred_idx].backward()
        if input_embeds_for_grad.grad is None:
            empty_df = pd.DataFrame(columns=['token', 'score'])
            empty_fig = create_empty_plotly_figure("Gradient Error")
            error_label_output = {"Status": "Error", "Message": "Gradient calculation failed."}
            return [],"Analysis Error", error_label_output, [], empty_df, empty_fig # 6 items
        
        grads = input_embeds_for_grad.grad.clone().detach()
        scores = (grads * input_embeds_detached).norm(dim=2).squeeze(0)
        scores_np = scores.cpu().numpy()
        valid_scores_for_norm = scores_np[np.isfinite(scores_np)]
        scores_np = scores_np / (valid_scores_for_norm.max() + 1e-9) if len(valid_scores_for_norm) > 0 and valid_scores_for_norm.max() > 0 else np.zeros_like(scores_np)

        tokens_raw = tokenizer.convert_ids_to_tokens(input_ids[0], skip_special_tokens=False)
        actual_tokens = [tok for i, tok in enumerate(tokens_raw) if input_ids[0,i] != tokenizer.pad_token_id]
        actual_scores_np = scores_np[:len(actual_tokens)]
        actual_input_embeds = input_embeds_detached[0, :len(actual_tokens), :].cpu().numpy()

        # HTML generation logic removed
        highlighted_text_data = []
        cls_token_id, sep_token_id = tokenizer.cls_token_id, tokenizer.sep_token_id

        for i, tok_str in enumerate(actual_tokens):
            clean_tok_str = tok_str.replace("##", "") if "##" not in tok_str else tok_str[2:]
            current_score = actual_scores_np[i]
            current_score_clipped = max(0, min(1, current_score))
            current_token_id = input_ids[0, i].item()

            if current_token_id == cls_token_id or current_token_id == sep_token_id:
                highlighted_text_data.append((clean_tok_str + " ", None))
            else:
                highlighted_text_data.append((clean_tok_str + " ", round(current_score_clipped, 3)))

        top_tokens_for_df, top_tokens_for_barplot_list = [], []
        valid_indices = [idx for idx, token_id in enumerate(input_ids[0,:len(actual_tokens)].tolist())
                         if token_id not in [cls_token_id, sep_token_id]] 
        sorted_valid_indices = sorted(valid_indices, key=lambda idx: -actual_scores_np[idx])
        for token_idx in sorted_valid_indices[:top_k_value]:
            token_str = actual_tokens[token_idx]
            score_val_str = f"{actual_scores_np[token_idx]:.3f}"
            top_tokens_for_df.append([token_str, score_val_str])
            top_tokens_for_barplot_list.append({"token": token_str, "score": actual_scores_np[token_idx]})
        
        barplot_df = pd.DataFrame(top_tokens_for_barplot_list) if top_tokens_for_barplot_list else pd.DataFrame(columns=['token', 'score'])
            
        predicted_class_label_str = CLASS_LABEL_MAP.get(pred_idx, f"Unknown Index ({pred_idx})")
        
        prediction_summary_text = f"Predicted Class: {predicted_class_label_str}\nProbability: {pred_prob_val:.3f}"
        prediction_details_for_label = {predicted_class_label_str: float(f"{pred_prob_val:.3f}")}

        pca_fig = create_empty_plotly_figure("PCA Plot N/A\n(Not enough non-special tokens for 3D)")
        non_special_token_indices = [idx for idx, token_id in enumerate(input_ids[0,:len(actual_tokens)].tolist())
                                     if token_id not in [cls_token_id, sep_token_id]]
        
        if len(non_special_token_indices) >= 3 : 
            pca_tokens = [actual_tokens[i] for i in non_special_token_indices]
            if len(pca_tokens) > 0:
                pca_embeddings = actual_input_embeds[non_special_token_indices, :]
                pca_scores_for_plot = actual_scores_np[non_special_token_indices]
            
                pca = PCA(n_components=3, random_state=SEED)
                token_embeddings_3d = pca.fit_transform(pca_embeddings)
                pca_fig = plot_token_pca_3d_plotly(token_embeddings_3d, pca_tokens, pca_scores_for_plot)
        
        return (highlighted_text_data, # HTML output removed
                prediction_summary_text, prediction_details_for_label, 
                top_tokens_for_df, barplot_df, 
                pca_fig) # 6 items

    except Exception as e:
        import traceback
        tb_str = traceback.format_exc()
        # HTML output removed
        print(f"analyze_sentence_for_gradio error: {e}\n{tb_str}")
        empty_df = pd.DataFrame(columns=['token', 'score'])
        empty_fig = create_empty_plotly_figure("Analysis Error")
        error_label_output = {"Status": "Error", "Message": f"Analysis failed: {str(e)}"}
        return [], "Analysis Failed", error_label_output, [], empty_df, empty_fig # 6 items

# --- Gradio UI Definition (HTML Highlight Tab removed) ---
theme = gr.themes.Monochrome(
    primary_hue=gr.themes.colors.blue, 
    secondary_hue=gr.themes.colors.sky, 
    neutral_hue=gr.themes.colors.slate
).set(
    body_background_fill="#f0f2f6",
    block_shadow="*shadow_drop_lg",
    button_primary_background_fill="*primary_500",
    button_primary_text_color="white",
)

with gr.Blocks(title="AI Sentence Analyzer XAI πŸš€", theme=theme, css=".gradio-container {max-width: 98% !important;}") as demo:
    gr.Markdown("# πŸš€ AI Sentence Analyzer XAI: Exploring Model Explanations")
    gr.Markdown("Analyze English sentences to understand BERT model predictions through various XAI visualization techniques. "
                "Explore token importance and their distribution in the embedding space.")

    with gr.Row(equal_height=False):
        with gr.Column(scale=1, min_width=350):
            with gr.Group():
                gr.Markdown("### ✏️ Input Sentence & Settings")
                input_sentence = gr.Textbox(lines=5, label="English Sentence to Analyze", placeholder="Enter the English sentence you want to analyze here...")
                input_top_k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Top-K Tokens")
                submit_button = gr.Button("Analyze Sentence πŸ’«", variant="primary")
        
        with gr.Column(scale=2):
            with gr.Accordion("🎯 Prediction Outcome", open=True):
                output_prediction_summary = gr.Textbox(label="Prediction Summary", lines=2, interactive=False)
                output_prediction_details = gr.Label(label="Prediction Details & Confidence")
            with gr.Accordion("⭐ Top-K Important Tokens (Table)", open=True):
                output_top_tokens_df = gr.DataFrame(headers=["Token", "Score"], label="Most Important Tokens", 
                                                    row_count=(1,"dynamic"), col_count=(2,"fixed"), interactive=False, wrap=True)
    gr.Markdown("---") 

    gr.Markdown("## πŸ“Š Detailed Visualizations")
    
    # HTML Highlight (Custom) section removed

    with gr.Group(): # HighlightedText
        gr.Markdown("### πŸ–οΈ Highlighted Text (Gradio)")
        output_highlighted_text = gr.HighlightedText(
            label="Token Importance (Score: 0-1)",
            show_legend=True,
            combine_adjacent=False 
        )
    
    with gr.Row(): # BarPlot and PCA Plot Side-by-Side
        with gr.Column(scale=1, min_width=400):
            with gr.Group():
                gr.Markdown("### πŸ“Š Top-K Bar Plot")
                output_top_tokens_barplot = gr.BarPlot(
                    label="Top-K Token Importance Scores", 
                    x="token", 
                    y="score", 
                    tooltip=['token', 'score'],
                    min_width=300
                )
        with gr.Column(scale=1, min_width=400):
            with gr.Group():
                gr.Markdown("### 🌐 Token Embeddings 3D PCA (Interactive)")
                output_pca_plot = gr.Plot(label="3D PCA of Token Embeddings (Colored by Importance Score)")
            
    gr.Markdown("---")
    
    gr.Examples(
        examples=[
            ["This movie is an absolute masterpiece, captivating from start to finish.", 5],
            ["Despite some flaws, the film offers a compelling narrative.", 3],
            ["I was thoroughly disappointed with the lackluster performance and predictable plot.", 4]
        ],
        inputs=[input_sentence, input_top_k],
        outputs=[ # output_html_visualization removed
            output_highlighted_text,
            output_prediction_summary, output_prediction_details,
            output_top_tokens_df, output_top_tokens_barplot,
            output_pca_plot
        ],
        fn=analyze_sentence_for_gradio,
        cache_examples=False
    )
    gr.HTML("<p style='text-align: center; color: #4a5568;'>Explainable AI Demo powered by Gradio & Hugging Face Transformers</p>")
    
    submit_button.click(
        fn=analyze_sentence_for_gradio,
        inputs=[input_sentence, input_top_k],
        outputs=[ # output_html_visualization removed
            output_highlighted_text,
            output_prediction_summary, output_prediction_details, 
            output_top_tokens_df, output_top_tokens_barplot,
            output_pca_plot
        ],
        api_name="explain_sentence_xai"
    )

if __name__ == "__main__":
    if not MODELS_LOADED_SUCCESSFULLY:
        print("*"*80)
        print(f"WARNING: Models failed to load! {MODEL_LOADING_ERROR_MESSAGE}")
        print("The Gradio UI will be displayed, but analysis will fail.")
        print("*"*80)
    demo.launch()