Spaces:
Sleeping
Sleeping
File size: 16,512 Bytes
f38d876 234dafc f38d876 4223edb 6e12229 4223edb 6e12229 4c2f748 c9044fd f38d876 234dafc f38d876 c9044fd 4223edb f38d876 c9044fd f38d876 c9044fd f38d876 c9044fd f38d876 c9044fd f38d876 4223edb f38d876 1613a6f 2b56bba f38d876 c9044fd f38d876 4223edb c9044fd f38d876 c9044fd 9a618da c9044fd 9a618da c9044fd 4223edb c9044fd 9a618da c9044fd 9a618da c9044fd 9a618da c9044fd 4223edb c9044fd 9a618da c9044fd 9a618da c9044fd 9a618da c9044fd 4223edb c9044fd 9a618da c9044fd 4223edb 234dafc c9044fd f38d876 234dafc 4223edb c9044fd 6e12229 234dafc f38d876 4223edb f38d876 4223edb f38d876 4223edb c9044fd 6e12229 234dafc f38d876 4223edb 1613a6f f38d876 4223edb f38d876 4223edb f38d876 4223edb f38d876 4223edb c9044fd 6e12229 234dafc 4223edb f38d876 9a618da c9044fd f38d876 4223edb f38d876 234dafc 4223edb f38d876 4223edb f38d876 4223edb f38d876 4223edb f38d876 6e12229 f38d876 c9044fd 72b741e 6e12229 c9044fd 4223edb 2b56bba 1613a6f 9a618da 4223edb 1613a6f c9044fd 1613a6f 234dafc 4223edb 234dafc f38d876 234dafc c9044fd 4223edb c9044fd 6e12229 234dafc c9044fd 234dafc c9044fd 4223edb f38d876 c9044fd f38d876 4223edb 9a618da 4223edb c9044fd 4223edb f38d876 c9044fd 72b741e c9044fd 4223edb 234dafc f38d876 72b741e 234dafc 72b741e 234dafc 72b741e 234dafc 72b741e 234dafc 72b741e 234dafc 72b741e 4223edb 234dafc 72b741e 4223edb 234dafc 4223edb 1613a6f 4223edb 9a618da 4223edb c9044fd f38d876 234dafc 4223edb 1613a6f f38d876 4223edb f38d876 c9044fd f38d876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import gradio as gr
import os
import joblib
import torch
import numpy as np
import html # μ¬μ ν highlighted_text_data μμ± μ html.escapeλ₯Ό μ¬μ©ν μ μμΌλ―λ‘ μ μ§
from transformers import AutoTokenizer, AutoModel, logging as hf_logging
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import plotly.graph_objects as go
# --- Global Settings and Model Loading ---
hf_logging.set_verbosity_error()
MODEL_NAME = "bert-base-uncased"
DEVICE = "cpu"
SAVE_DIR = "μ μ₯μ μ₯1"
LAYER_ID = 4
SEED = 0
CLF_NAME = "linear"
CLASS_LABEL_MAP = {
0: "World",
1: "Sports",
2: "Business",
3: "Sci/Tech"
}
TOKENIZER_GLOBAL, MODEL_GLOBAL = None, None
W_GLOBAL, MU_GLOBAL, W_P_GLOBAL, B_P_GLOBAL = None, None, None, None
MODELS_LOADED_SUCCESSFULLY = False
MODEL_LOADING_ERROR_MESSAGE = ""
try:
print("Gradio App: Initializing model loading...")
lda_file_path = os.path.join(SAVE_DIR, f"lda_layer{LAYER_ID}_seed{SEED}.pkl")
clf_file_path = os.path.join(SAVE_DIR, f"{CLF_NAME}_layer{LAYER_ID}_projlda_seed{SEED}.pkl")
if not os.path.isdir(SAVE_DIR):
raise FileNotFoundError(f"Error: Model storage directory '{SAVE_DIR}' not found.")
if not os.path.exists(lda_file_path):
raise FileNotFoundError(f"Error: LDA model file '{lda_file_path}' not found.")
if not os.path.exists(clf_file_path):
raise FileNotFoundError(f"Error: Classifier model file '{clf_file_path}' not found.")
lda = joblib.load(lda_file_path)
clf = joblib.load(clf_file_path)
if hasattr(clf, "base_estimator"): clf = clf.base_estimator
W_GLOBAL = torch.tensor(lda.scalings_, dtype=torch.float32, device=DEVICE)
MU_GLOBAL = torch.tensor(lda.xbar_, dtype=torch.float32, device=DEVICE)
W_P_GLOBAL = torch.tensor(clf.coef_, dtype=torch.float32, device=DEVICE)
B_P_GLOBAL = torch.tensor(clf.intercept_, dtype=torch.float32, device=DEVICE)
TOKENIZER_GLOBAL = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
MODEL_GLOBAL = AutoModel.from_pretrained(
MODEL_NAME, output_hidden_states=True, output_attentions=False
).to(DEVICE).eval()
MODELS_LOADED_SUCCESSFULLY = True
print("Gradio App: All models and data loaded successfully!")
except Exception as e:
MODELS_LOADED_SUCCESSFULLY = False
MODEL_LOADING_ERROR_MESSAGE = f"Critical error during model loading: {str(e)}\nPlease ensure the '{SAVE_DIR}' folder and its contents are correct."
print(MODEL_LOADING_ERROR_MESSAGE)
# Helper function: 3D PCA Visualization using Plotly
def plot_token_pca_3d_plotly(token_embeddings_3d, tokens, scores, title="Token Embeddings 3D PCA (Colored by Importance)"):
num_annotations = min(len(tokens), 20)
scores_array = np.array(scores).flatten()
text_annotations = [''] * len(tokens)
if len(scores_array) > 0 and len(tokens) > 0:
indices_to_annotate = np.argsort(scores_array)[-num_annotations:]
for i in indices_to_annotate:
if i < len(tokens):
text_annotations[i] = tokens[i]
fig = go.Figure(data=[go.Scatter3d(
x=token_embeddings_3d[:, 0],
y=token_embeddings_3d[:, 1],
z=token_embeddings_3d[:, 2],
mode='markers+text',
text=text_annotations,
textfont=dict(size=9, color='#333333'),
textposition='top center',
marker=dict(
size=6,
color=scores_array,
colorscale='RdBu',
reversescale=True,
opacity=0.8,
colorbar=dict(title='Importance', tickfont=dict(size=9), len=0.75, yanchor='middle')
),
hoverinfo='text',
hovertext=[f"Token: {t}<br>Score: {s:.3f}" for t, s in zip(tokens, scores_array)]
)])
fig.update_layout(
title=dict(text=title, x=0.5, font=dict(size=16)),
scene=dict(
xaxis=dict(title=dict(text='PCA Comp 1', font=dict(size=10)), tickfont=dict(size=9), backgroundcolor="rgba(230, 230, 230, 0.8)"),
yaxis=dict(title=dict(text='PCA Comp 2', font=dict(size=10)), tickfont=dict(size=9), backgroundcolor="rgba(230, 230, 230, 0.8)"),
zaxis=dict(title=dict(text='PCA Comp 3', font=dict(size=10)), tickfont=dict(size=9), backgroundcolor="rgba(230, 230, 230, 0.8)"),
bgcolor="rgba(255, 255, 255, 0.95)",
camera_eye=dict(x=1.5, y=1.5, z=0.5)
),
margin=dict(l=5, r=5, b=5, t=45),
paper_bgcolor='rgba(0,0,0,0)'
)
return fig
# Helper function: Create an empty Plotly figure for placeholders
def create_empty_plotly_figure(message="N/A"):
fig = go.Figure()
fig.add_annotation(text=message, xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(size=12, color="grey"))
fig.update_layout(
xaxis={'visible': False},
yaxis={'visible': False},
height=300,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'
)
return fig
# --- Core Analysis Function (returns 6 items for Gradio UI) ---
def analyze_sentence_for_gradio(sentence_text, top_k_value):
if not MODELS_LOADED_SUCCESSFULLY:
# HTML output removed, adjust error return
empty_df = pd.DataFrame(columns=['token', 'score'])
empty_fig = create_empty_plotly_figure("Model Loading Failed")
error_label_output = {"Status": "Error", "Message": "Model Loading Failed. Check logs."}
return [], "Model Loading Failed", error_label_output, [], empty_df, empty_fig # 6 items
try:
tokenizer, model = TOKENIZER_GLOBAL, MODEL_GLOBAL
W, mu, w_p, b_p = W_GLOBAL, MU_GLOBAL, W_P_GLOBAL, B_P_GLOBAL
enc = tokenizer(sentence_text, return_tensors="pt", truncation=True, max_length=510, padding=True)
input_ids, attn_mask = enc["input_ids"].to(DEVICE), enc["attention_mask"].to(DEVICE)
if input_ids.shape[1] == 0:
empty_df = pd.DataFrame(columns=['token', 'score'])
empty_fig = create_empty_plotly_figure("Invalid Input")
error_label_output = {"Status": "Error", "Message": "Invalid input, no valid tokens."}
return [], "Input Error", error_label_output, [], empty_df, empty_fig # 6 items
input_embeds_detached = model.embeddings.word_embeddings(input_ids).clone().detach()
input_embeds_for_grad = input_embeds_detached.clone().requires_grad_(True)
outputs = model(inputs_embeds=input_embeds_for_grad, attention_mask=attn_mask,
output_hidden_states=True, output_attentions=False)
cls_vec = outputs.hidden_states[LAYER_ID][:, 0, :]
z_projected = (cls_vec - mu) @ W
logit_output = z_projected @ w_p.T + b_p
probs = torch.softmax(logit_output, dim=1)
pred_idx, pred_prob_val = torch.argmax(probs, dim=1).item(), probs[0, torch.argmax(probs, dim=1).item()].item()
if input_embeds_for_grad.grad is not None: input_embeds_for_grad.grad.zero_()
logit_output[0, pred_idx].backward()
if input_embeds_for_grad.grad is None:
empty_df = pd.DataFrame(columns=['token', 'score'])
empty_fig = create_empty_plotly_figure("Gradient Error")
error_label_output = {"Status": "Error", "Message": "Gradient calculation failed."}
return [],"Analysis Error", error_label_output, [], empty_df, empty_fig # 6 items
grads = input_embeds_for_grad.grad.clone().detach()
scores = (grads * input_embeds_detached).norm(dim=2).squeeze(0)
scores_np = scores.cpu().numpy()
valid_scores_for_norm = scores_np[np.isfinite(scores_np)]
scores_np = scores_np / (valid_scores_for_norm.max() + 1e-9) if len(valid_scores_for_norm) > 0 and valid_scores_for_norm.max() > 0 else np.zeros_like(scores_np)
tokens_raw = tokenizer.convert_ids_to_tokens(input_ids[0], skip_special_tokens=False)
actual_tokens = [tok for i, tok in enumerate(tokens_raw) if input_ids[0,i] != tokenizer.pad_token_id]
actual_scores_np = scores_np[:len(actual_tokens)]
actual_input_embeds = input_embeds_detached[0, :len(actual_tokens), :].cpu().numpy()
# HTML generation logic removed
highlighted_text_data = []
cls_token_id, sep_token_id = tokenizer.cls_token_id, tokenizer.sep_token_id
for i, tok_str in enumerate(actual_tokens):
clean_tok_str = tok_str.replace("##", "") if "##" not in tok_str else tok_str[2:]
current_score = actual_scores_np[i]
current_score_clipped = max(0, min(1, current_score))
current_token_id = input_ids[0, i].item()
if current_token_id == cls_token_id or current_token_id == sep_token_id:
highlighted_text_data.append((clean_tok_str + " ", None))
else:
highlighted_text_data.append((clean_tok_str + " ", round(current_score_clipped, 3)))
top_tokens_for_df, top_tokens_for_barplot_list = [], []
valid_indices = [idx for idx, token_id in enumerate(input_ids[0,:len(actual_tokens)].tolist())
if token_id not in [cls_token_id, sep_token_id]]
sorted_valid_indices = sorted(valid_indices, key=lambda idx: -actual_scores_np[idx])
for token_idx in sorted_valid_indices[:top_k_value]:
token_str = actual_tokens[token_idx]
score_val_str = f"{actual_scores_np[token_idx]:.3f}"
top_tokens_for_df.append([token_str, score_val_str])
top_tokens_for_barplot_list.append({"token": token_str, "score": actual_scores_np[token_idx]})
barplot_df = pd.DataFrame(top_tokens_for_barplot_list) if top_tokens_for_barplot_list else pd.DataFrame(columns=['token', 'score'])
predicted_class_label_str = CLASS_LABEL_MAP.get(pred_idx, f"Unknown Index ({pred_idx})")
prediction_summary_text = f"Predicted Class: {predicted_class_label_str}\nProbability: {pred_prob_val:.3f}"
prediction_details_for_label = {predicted_class_label_str: float(f"{pred_prob_val:.3f}")}
pca_fig = create_empty_plotly_figure("PCA Plot N/A\n(Not enough non-special tokens for 3D)")
non_special_token_indices = [idx for idx, token_id in enumerate(input_ids[0,:len(actual_tokens)].tolist())
if token_id not in [cls_token_id, sep_token_id]]
if len(non_special_token_indices) >= 3 :
pca_tokens = [actual_tokens[i] for i in non_special_token_indices]
if len(pca_tokens) > 0:
pca_embeddings = actual_input_embeds[non_special_token_indices, :]
pca_scores_for_plot = actual_scores_np[non_special_token_indices]
pca = PCA(n_components=3, random_state=SEED)
token_embeddings_3d = pca.fit_transform(pca_embeddings)
pca_fig = plot_token_pca_3d_plotly(token_embeddings_3d, pca_tokens, pca_scores_for_plot)
return (highlighted_text_data, # HTML output removed
prediction_summary_text, prediction_details_for_label,
top_tokens_for_df, barplot_df,
pca_fig) # 6 items
except Exception as e:
import traceback
tb_str = traceback.format_exc()
# HTML output removed
print(f"analyze_sentence_for_gradio error: {e}\n{tb_str}")
empty_df = pd.DataFrame(columns=['token', 'score'])
empty_fig = create_empty_plotly_figure("Analysis Error")
error_label_output = {"Status": "Error", "Message": f"Analysis failed: {str(e)}"}
return [], "Analysis Failed", error_label_output, [], empty_df, empty_fig # 6 items
# --- Gradio UI Definition (HTML Highlight Tab removed) ---
theme = gr.themes.Monochrome(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.sky,
neutral_hue=gr.themes.colors.slate
).set(
body_background_fill="#f0f2f6",
block_shadow="*shadow_drop_lg",
button_primary_background_fill="*primary_500",
button_primary_text_color="white",
)
with gr.Blocks(title="AI Sentence Analyzer XAI π", theme=theme, css=".gradio-container {max-width: 98% !important;}") as demo:
gr.Markdown("# π AI Sentence Analyzer XAI: Exploring Model Explanations")
gr.Markdown("Analyze English sentences to understand BERT model predictions through various XAI visualization techniques. "
"Explore token importance and their distribution in the embedding space.")
with gr.Row(equal_height=False):
with gr.Column(scale=1, min_width=350):
with gr.Group():
gr.Markdown("### βοΈ Input Sentence & Settings")
input_sentence = gr.Textbox(lines=5, label="English Sentence to Analyze", placeholder="Enter the English sentence you want to analyze here...")
input_top_k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Top-K Tokens")
submit_button = gr.Button("Analyze Sentence π«", variant="primary")
with gr.Column(scale=2):
with gr.Accordion("π― Prediction Outcome", open=True):
output_prediction_summary = gr.Textbox(label="Prediction Summary", lines=2, interactive=False)
output_prediction_details = gr.Label(label="Prediction Details & Confidence")
with gr.Accordion("β Top-K Important Tokens (Table)", open=True):
output_top_tokens_df = gr.DataFrame(headers=["Token", "Score"], label="Most Important Tokens",
row_count=(1,"dynamic"), col_count=(2,"fixed"), interactive=False, wrap=True)
gr.Markdown("---")
gr.Markdown("## π Detailed Visualizations")
# HTML Highlight (Custom) section removed
with gr.Group(): # HighlightedText
gr.Markdown("### ποΈ Highlighted Text (Gradio)")
output_highlighted_text = gr.HighlightedText(
label="Token Importance (Score: 0-1)",
show_legend=True,
combine_adjacent=False
)
with gr.Row(): # BarPlot and PCA Plot Side-by-Side
with gr.Column(scale=1, min_width=400):
with gr.Group():
gr.Markdown("### π Top-K Bar Plot")
output_top_tokens_barplot = gr.BarPlot(
label="Top-K Token Importance Scores",
x="token",
y="score",
tooltip=['token', 'score'],
min_width=300
)
with gr.Column(scale=1, min_width=400):
with gr.Group():
gr.Markdown("### π Token Embeddings 3D PCA (Interactive)")
output_pca_plot = gr.Plot(label="3D PCA of Token Embeddings (Colored by Importance Score)")
gr.Markdown("---")
gr.Examples(
examples=[
["This movie is an absolute masterpiece, captivating from start to finish.", 5],
["Despite some flaws, the film offers a compelling narrative.", 3],
["I was thoroughly disappointed with the lackluster performance and predictable plot.", 4]
],
inputs=[input_sentence, input_top_k],
outputs=[ # output_html_visualization removed
output_highlighted_text,
output_prediction_summary, output_prediction_details,
output_top_tokens_df, output_top_tokens_barplot,
output_pca_plot
],
fn=analyze_sentence_for_gradio,
cache_examples=False
)
gr.HTML("<p style='text-align: center; color: #4a5568;'>Explainable AI Demo powered by Gradio & Hugging Face Transformers</p>")
submit_button.click(
fn=analyze_sentence_for_gradio,
inputs=[input_sentence, input_top_k],
outputs=[ # output_html_visualization removed
output_highlighted_text,
output_prediction_summary, output_prediction_details,
output_top_tokens_df, output_top_tokens_barplot,
output_pca_plot
],
api_name="explain_sentence_xai"
)
if __name__ == "__main__":
if not MODELS_LOADED_SUCCESSFULLY:
print("*"*80)
print(f"WARNING: Models failed to load! {MODEL_LOADING_ERROR_MESSAGE}")
print("The Gradio UI will be displayed, but analysis will fail.")
print("*"*80)
demo.launch() |