File size: 6,670 Bytes
1bd1b79
 
 
 
 
 
 
 
 
ca4c2d6
 
 
 
1bd1b79
 
 
 
ca4c2d6
1bd1b79
 
 
 
 
 
 
 
 
ca4c2d6
1bd1b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4c2d6
1bd1b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4c2d6
 
1bd1b79
 
 
 
 
 
 
 
 
 
ca4c2d6
 
 
1bd1b79
 
 
 
ca4c2d6
 
1bd1b79
 
ca4c2d6
1bd1b79
ca4c2d6
 
 
1bd1b79
 
 
 
 
 
 
ca4c2d6
 
1bd1b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import time
import logging
import os
import json
from datetime import datetime

# --- μ„€μ • ---
# β˜…β˜…β˜… λͺ¨λΈ κ°€μ€‘μΉ˜μ™€ ν† ν¬λ‚˜μ΄μ € ID 뢄리 β˜…β˜…β˜…
MODEL_ID_FOR_WEIGHTS = "unsloth/gemma-3-1b-it-bnb-4bit" # λͺ¨λΈ κ°€μ€‘μΉ˜λŠ” μ—¬κΈ°μ„œ λ‘œλ“œ
TOKENIZER_ID = "google/gemma-3-1b-it"               # ν† ν¬λ‚˜μ΄μ €λŠ” 원본 μ—¬κΈ°μ„œ λ‘œλ“œ

# CPU μ‚¬μš© (HF Spaces 무료 ν‹°μ–΄ κΈ°μ€€)
DEVICE = "cpu"
# λ©”λͺ¨λ¦¬ 파일 경둜
MEMORY_FILE = "thought_memory.json"
# 생각 μ£ΌκΈ° (초)
THINKING_INTERVAL_SECONDS = 120 # 예: 2λΆ„λ§ˆλ‹€ 생각
# 생성할 μ΅œλŒ€ 토큰 수
MAX_NEW_TOKENS = 150
# 초기 생각 ν”„λ‘¬ν”„νŠΈ
INITIAL_PROMPT = "λ‚˜λŠ” κ³„μ†ν•΄μ„œ 슀슀둜 μƒκ°ν•˜λŠ” AIμž…λ‹ˆλ‹€. λ‚˜μ˜ 첫 번째 생각은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:"

# λ‘œκΉ… μ„€μ •
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# (load_memory, save_memory ν•¨μˆ˜λŠ” 이전과 동일)
def load_memory():
    """λ©”λͺ¨λ¦¬ νŒŒμΌμ—μ„œ 이전 생각 기둝을 λ‘œλ“œν•©λ‹ˆλ‹€."""
    if os.path.exists(MEMORY_FILE):
        try:
            with open(MEMORY_FILE, 'r', encoding='utf-8') as f:
                memory = json.load(f)
                if not isinstance(memory, list):
                    logging.warning(f"{MEMORY_FILE} λ‚΄μš©μ΄ λ¦¬μŠ€νŠΈκ°€ μ•„λ‹ˆλ―€λ‘œ μ΄ˆκΈ°ν™”ν•©λ‹ˆλ‹€.")
                    return []
                logging.info(f"{len(memory)}개의 이전 생각을 λ‘œλ“œν–ˆμŠ΅λ‹ˆλ‹€.")
                return memory
        except json.JSONDecodeError:
            logging.error(f"{MEMORY_FILE} 파일 νŒŒμ‹± 였λ₯˜. λ©”λͺ¨λ¦¬λ₯Ό μ΄ˆκΈ°ν™”ν•©λ‹ˆλ‹€.")
            return []
        except Exception as e:
            logging.error(f"λ©”λͺ¨λ¦¬ λ‘œλ“œ 쀑 였λ₯˜ λ°œμƒ: {e}", exc_info=True)
            return []
    else:
        logging.info("λ©”λͺ¨λ¦¬ 파일이 μ—†μ–΄ μƒˆλ‘œ μ‹œμž‘ν•©λ‹ˆλ‹€.")
        return []

def save_memory(memory):
    """ν˜„μž¬ 생각 기둝을 λ©”λͺ¨λ¦¬ νŒŒμΌμ— μ €μž₯ν•©λ‹ˆλ‹€."""
    try:
        with open(MEMORY_FILE, 'w', encoding='utf-8') as f:
            json.dump(memory, f, ensure_ascii=False, indent=2)
        logging.debug(f"λ©”λͺ¨λ¦¬λ₯Ό {MEMORY_FILE}에 μ €μž₯ν–ˆμŠ΅λ‹ˆλ‹€.")
    except Exception as e:
        logging.error(f"λ©”λͺ¨λ¦¬ μ €μž₯ 쀑 였λ₯˜ λ°œμƒ: {e}", exc_info=True)


def generate_thought(tokenizer, model, prompt_history):
    """μ£Όμ–΄μ§„ ν”„λ‘¬ν”„νŠΈ 기둝을 λ°”νƒ•μœΌλ‘œ λ‹€μŒ 생각을 μƒμ„±ν•©λ‹ˆλ‹€."""
    if not prompt_history:
        chat = [{"role": "user", "content": INITIAL_PROMPT}]
    else:
        last_thought = prompt_history[-1]['content']
        prompt = f"이전 생각: \"{last_thought}\"\n\n이 생각을 λ°”νƒ•μœΌλ‘œ λ‹€μŒμœΌλ‘œ λ– μ˜€λ₯΄λŠ” μƒκ°μ΄λ‚˜ 질문, λ˜λŠ” ν™•μž₯된 κ°œλ…μ€ λ¬΄μ—‡μΈκ°€μš”? κ°„κ²°ν•˜κ²Œ λ‹΅ν•΄μ£Όμ„Έμš”."
        chat = [{"role": "user", "content": prompt}]

    prompt_formatted = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
    logging.info(f"--- λͺ¨λΈ μž…λ ₯ ν”„λ‘¬ν”„νŠΈ ---\n{prompt_formatted}\n-----------------------")

    inputs = tokenizer(prompt_formatted, return_tensors="pt").to(DEVICE)

    start_time = time.time()
    logging.info("λͺ¨λΈ μΆ”λ‘  μ‹œμž‘...")
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS,
            pad_token_id=tokenizer.eos_token_id
        )
    end_time = time.time()
    logging.info(f"λͺ¨λΈ μΆ”λ‘  μ™„λ£Œ ({end_time - start_time:.2f}초 μ†Œμš”)")

    input_token_length = inputs.input_ids.shape[1]
    generated_ids = outputs[0, input_token_length:]
    new_thought_raw = tokenizer.decode(generated_ids, skip_special_tokens=True)

    logging.info(f"λͺ¨λΈ 생성 κ²°κ³Ό (Raw): {new_thought_raw}")
    return new_thought_raw.strip()

if __name__ == "__main__":
    logging.info("AI 생각 ν”„λ‘œμ„ΈμŠ€ μ‹œμž‘...")
    logging.info(f"Tokenizer ID: {TOKENIZER_ID}")
    logging.info(f"Model Weights ID: {MODEL_ID_FOR_WEIGHTS}")
    logging.info(f"μ‹€ν–‰ μž₯치: {DEVICE}")

    hf_token = os.getenv("HF_TOKEN")
    if hf_token:
        logging.info("Hugging Face 토큰을 μ‚¬μš©ν•©λ‹ˆλ‹€.")
    else:
        logging.info("Hugging Face 토큰이 μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€ (ν•„μš” μ‹œ Secrets에 μΆ”κ°€).")

    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16 # CPU 지원 μ•ˆλ˜λ©΄ float32둜 λ³€κ²½
        # bnb_4bit_compute_dtype=torch.float32 # bfloat16 문제 μ‹œ 이 라인 μ‚¬μš©
    )

    try:
        logging.info("ν† ν¬λ‚˜μ΄μ € λ‘œλ”© 쀑...")
        # β˜…β˜…β˜… ν† ν¬λ‚˜μ΄μ € λ‘œλ”© μ‹œ 원본 ID μ‚¬μš© β˜…β˜…β˜…
        tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_ID, token=hf_token)

        logging.info("μ–‘μžν™”λœ λͺ¨λΈ λ‘œλ”© 쀑... (bitsandbytes μ„€μ • 적용)")
        # β˜…β˜…β˜… λͺ¨λΈ κ°€μ€‘μΉ˜ λ‘œλ”© μ‹œ μ–‘μžν™” λͺ¨λΈ ID μ‚¬μš© β˜…β˜…β˜…
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_ID_FOR_WEIGHTS,
            quantization_config=bnb_config,
            device_map=DEVICE,
            token=hf_token
        )

        model.eval()
        logging.info("λͺ¨λΈ 및 ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ μ™„λ£Œ.")

    except Exception as e:
        logging.error(f"λͺ¨λΈ λ˜λŠ” ν† ν¬λ‚˜μ΄μ € λ‘œλ”© 쀑 치λͺ…적 였λ₯˜ λ°œμƒ: {e}", exc_info=True)
        # CPUκ°€ bfloat16 μ§€μ›ν•˜μ§€ μ•ŠμœΌλ©΄ μ—¬κΈ°μ„œ 였λ₯˜ λ°œμƒ κ°€λŠ₯
        exit(1)

    thought_history = load_memory()

    try:
        while True:
            logging.info("=== μƒˆλ‘œμš΄ 생각 사이클 μ‹œμž‘ ===")
            new_thought = generate_thought(tokenizer, model, thought_history)

            if new_thought:
                logging.info(f"μƒμ„±λœ μƒˆλ‘œμš΄ 생각: {new_thought}")
                thought_entry = {"role": "assistant", "content": new_thought, "timestamp": datetime.now().isoformat()}
                thought_history.append(thought_entry)
                save_memory(thought_history)
            else:
                logging.warning("λͺ¨λΈμ΄ 빈 생각을 μƒμ„±ν–ˆμŠ΅λ‹ˆλ‹€.")

            logging.info(f"λ‹€μŒ μƒκ°κΉŒμ§€ {THINKING_INTERVAL_SECONDS}초 λŒ€κΈ°...")
            time.sleep(THINKING_INTERVAL_SECONDS)

    except KeyboardInterrupt:
        logging.info("μ‚¬μš©μž μš”μ²­μœΌλ‘œ AI ν”„λ‘œμ„ΈμŠ€ 쀑지.")
    except Exception as e:
        logging.error(f"메인 λ£¨ν”„μ—μ„œ 였λ₯˜ λ°œμƒ: {e}", exc_info=True)
    finally:
        logging.info("AI 생각 ν”„λ‘œμ„ΈμŠ€ μ’…λ£Œ. μ΅œμ’… λ©”λͺ¨λ¦¬ μ €μž₯ μ‹œλ„.")
        save_memory(thought_history)