Kai Jennissen
commited on
added tools
Browse files- agent.py +120 -20
- app.py +20 -5
- requirements.in +3 -0
- requirements.txt +6 -0
- tools.py +672 -0
agent.py
CHANGED
@@ -3,10 +3,21 @@ from smolagents import (
|
|
3 |
CodeAgent,
|
4 |
DuckDuckGoSearchTool,
|
5 |
VisitWebpageTool,
|
6 |
-
InferenceClientModel,
|
|
|
|
|
7 |
)
|
8 |
from dotenv import load_dotenv
|
9 |
from tracing import setup_tracing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
load_dotenv()
|
12 |
|
@@ -22,6 +33,59 @@ If you are asked for a string, don't use articles, neither abbreviations (e.g. f
|
|
22 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
23 |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def initialize_tracing(enabled=True, provider="langfuse"):
|
27 |
"""
|
@@ -45,39 +109,75 @@ def get_agent():
|
|
45 |
|
46 |
# SmolagentsInstrumentor will automatically trace agent operations
|
47 |
|
48 |
-
llm_qwen = InferenceClientModel(
|
49 |
-
|
50 |
-
)
|
51 |
-
llm_deepseek = InferenceClientModel(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
)
|
59 |
|
60 |
# Create web agent
|
61 |
web_agent = ToolCallingAgent(
|
62 |
-
tools=[
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
max_steps=3,
|
65 |
name="Web_Agent",
|
66 |
description="A web agent that can search the web and visit webpages.",
|
67 |
verbosity_level=1,
|
68 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Create manager agent
|
71 |
manager_agent = CodeAgent(
|
72 |
-
tools=[],
|
73 |
-
managed_agents=[web_agent],
|
74 |
-
model=
|
75 |
max_steps=5,
|
76 |
planning_interval=10,
|
77 |
additional_authorized_imports=["pandas", "numpy"],
|
78 |
verbosity_level=1,
|
79 |
-
description=MANAGER_PROMPT,
|
80 |
)
|
|
|
|
|
81 |
return manager_agent
|
82 |
|
83 |
|
@@ -88,11 +188,11 @@ if __name__ == "__main__":
|
|
88 |
|
89 |
# Get agent with tracing already configured
|
90 |
agent = get_agent()
|
91 |
-
|
92 |
# Run agent - SmolagentsInstrumentor will automatically trace the execution
|
93 |
print("Running agent with tracing enabled...")
|
94 |
result = agent.run(
|
95 |
-
"
|
96 |
)
|
97 |
print(f"Result: {result}")
|
98 |
print(
|
|
|
3 |
CodeAgent,
|
4 |
DuckDuckGoSearchTool,
|
5 |
VisitWebpageTool,
|
6 |
+
# InferenceClientModel,
|
7 |
+
OpenAIServerModel,
|
8 |
+
WikipediaSearchTool,
|
9 |
)
|
10 |
from dotenv import load_dotenv
|
11 |
from tracing import setup_tracing
|
12 |
+
from tools import (
|
13 |
+
read_image,
|
14 |
+
transcribe_audio,
|
15 |
+
run_video,
|
16 |
+
read_code,
|
17 |
+
fetch_task_files,
|
18 |
+
)
|
19 |
+
|
20 |
+
# from tools import go_back, close_popups, search_item_ctrl_f, save_screenshot
|
21 |
|
22 |
load_dotenv()
|
23 |
|
|
|
33 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
34 |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """
|
35 |
|
36 |
+
helium_instructions = """
|
37 |
+
You can use helium to access websites. Don't bother about the helium driver, it's already managed.
|
38 |
+
We've already ran "from helium import *"
|
39 |
+
Then you can go to pages!
|
40 |
+
Code:
|
41 |
+
```py
|
42 |
+
go_to('github.com/trending')
|
43 |
+
```<end_code>
|
44 |
+
|
45 |
+
You can directly click clickable elements by inputting the text that appears on them.
|
46 |
+
Code:
|
47 |
+
```py
|
48 |
+
click("Top products")
|
49 |
+
```<end_code>
|
50 |
+
|
51 |
+
If it's a link:
|
52 |
+
Code:
|
53 |
+
```py
|
54 |
+
click(Link("Top products"))
|
55 |
+
```<end_code>
|
56 |
+
|
57 |
+
If you try to interact with an element and it's not found, you'll get a LookupError.
|
58 |
+
In general stop your action after each button click to see what happens on your screenshot.
|
59 |
+
Never try to login in a page.
|
60 |
+
|
61 |
+
To scroll up or down, use scroll_down or scroll_up with as an argument the number of pixels to scroll from.
|
62 |
+
Code:
|
63 |
+
```py
|
64 |
+
scroll_down(num_pixels=1200) # This will scroll one viewport down
|
65 |
+
```<end_code>
|
66 |
+
|
67 |
+
When you have pop-ups with a cross icon to close, don't try to click the close icon by finding its element or targeting an 'X' element (this most often fails).
|
68 |
+
Just use your built-in tool `close_popups` to close them:
|
69 |
+
Code:
|
70 |
+
```py
|
71 |
+
close_popups()
|
72 |
+
```<end_code>
|
73 |
+
|
74 |
+
You can use .exists() to check for the existence of an element. For example:
|
75 |
+
Code:
|
76 |
+
```py
|
77 |
+
if Text('Accept cookies?').exists():
|
78 |
+
click('I accept')
|
79 |
+
```<end_code>
|
80 |
+
"""
|
81 |
+
|
82 |
+
add_sys_prompt = """\n\nIf a file_url is available or an url is given in question statement, then request and use the content to answer the question. \
|
83 |
+
If a code file, such as .py file, is given, do not attempt to execute it but rather open it as a text file and analyze the content. \
|
84 |
+
When a tabluar file, such as csv, tsv, xlsx, is given, read it using pandas.
|
85 |
+
|
86 |
+
Make sure you provide the answer in accordance with the instruction provided in the question. Do not return the result of tool as a final_answer.
|
87 |
+
Do Not add any additional information, explanation, unnecessary words or symbols. The answer is likely as simple as one word."""
|
88 |
+
|
89 |
|
90 |
def initialize_tracing(enabled=True, provider="langfuse"):
|
91 |
"""
|
|
|
109 |
|
110 |
# SmolagentsInstrumentor will automatically trace agent operations
|
111 |
|
112 |
+
# llm_qwen = InferenceClientModel(
|
113 |
+
# model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together"
|
114 |
+
# )
|
115 |
+
# llm_deepseek = InferenceClientModel(
|
116 |
+
# "deepseek-ai/DeepSeek-R1",
|
117 |
+
# provider="together",
|
118 |
+
# max_tokens=8096,
|
119 |
+
# # "Qwen/Qwen3-235B-A22B-FP8",
|
120 |
+
# # provider="together",
|
121 |
+
# # max_tokens=8096,
|
122 |
+
# )
|
123 |
|
124 |
# Create web agent
|
125 |
web_agent = ToolCallingAgent(
|
126 |
+
tools=[
|
127 |
+
DuckDuckGoSearchTool(),
|
128 |
+
VisitWebpageTool(),
|
129 |
+
WikipediaSearchTool(),
|
130 |
+
],
|
131 |
+
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
132 |
max_steps=3,
|
133 |
name="Web_Agent",
|
134 |
description="A web agent that can search the web and visit webpages.",
|
135 |
verbosity_level=1,
|
136 |
)
|
137 |
+
mm_agent = CodeAgent(
|
138 |
+
tools=[
|
139 |
+
read_image,
|
140 |
+
transcribe_audio,
|
141 |
+
read_code,
|
142 |
+
run_video,
|
143 |
+
],
|
144 |
+
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
145 |
+
max_steps=3,
|
146 |
+
name="Multimedia_Agent",
|
147 |
+
description="An agent that can answer questions about all types of images, videos and speech. Needs to be provided with a valid url or an image.",
|
148 |
+
verbosity_level=1,
|
149 |
+
)
|
150 |
|
151 |
+
# Initialize the model
|
152 |
+
# vlm = InferenceClientModel(model_id="Qwen/Qwen2.5-Vision-32B", provider="together")
|
153 |
+
|
154 |
+
# # Create the agent
|
155 |
+
# vision_agent = CodeAgent(
|
156 |
+
# tools=[go_back, close_popups, search_item_ctrl_f],
|
157 |
+
# model=vlm,
|
158 |
+
# additional_authorized_imports=["helium", "selenium"],
|
159 |
+
# step_callbacks=[save_screenshot],
|
160 |
+
# max_steps=10,
|
161 |
+
# planning_interval=10,
|
162 |
+
# verbosity_level=1,
|
163 |
+
# name="Vision_Agent",
|
164 |
+
# description="A vision agent that can interact with webpages and take screenshots.",
|
165 |
+
# )
|
166 |
+
# vision_agent.prompt_templates["system_prompt"] += helium_instructions
|
167 |
+
|
168 |
+
# Import helium for the agent
|
169 |
# Create manager agent
|
170 |
manager_agent = CodeAgent(
|
171 |
+
tools=[fetch_task_files],
|
172 |
+
managed_agents=[web_agent, mm_agent],
|
173 |
+
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
174 |
max_steps=5,
|
175 |
planning_interval=10,
|
176 |
additional_authorized_imports=["pandas", "numpy"],
|
177 |
verbosity_level=1,
|
|
|
178 |
)
|
179 |
+
|
180 |
+
manager_agent.prompt_templates["system_prompt"] += add_sys_prompt
|
181 |
return manager_agent
|
182 |
|
183 |
|
|
|
188 |
|
189 |
# Get agent with tracing already configured
|
190 |
agent = get_agent()
|
191 |
+
agent.visualize()
|
192 |
# Run agent - SmolagentsInstrumentor will automatically trace the execution
|
193 |
print("Running agent with tracing enabled...")
|
194 |
result = agent.run(
|
195 |
+
"How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia."
|
196 |
)
|
197 |
print(f"Result: {result}")
|
198 |
print(
|
app.py
CHANGED
@@ -24,10 +24,24 @@ class BasicAgent:
|
|
24 |
self.agent = get_agent()
|
25 |
print("BasicAgent initialized.")
|
26 |
|
27 |
-
def __call__(self, question: str) -> str:
|
28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return answer
|
32 |
|
33 |
|
@@ -93,14 +107,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
93 |
results_log = []
|
94 |
answers_payload = []
|
95 |
print(f"Running agent on {len(questions_data)} questions...")
|
96 |
-
for item in questions_data[:
|
97 |
task_id = item.get("task_id")
|
98 |
question_text = item.get("question")
|
99 |
if not task_id or question_text is None:
|
100 |
print(f"Skipping item with missing task_id or question: {item}")
|
101 |
continue
|
102 |
try:
|
103 |
-
|
|
|
104 |
answers_payload.append(
|
105 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
106 |
)
|
|
|
24 |
self.agent = get_agent()
|
25 |
print("BasicAgent initialized.")
|
26 |
|
27 |
+
def __call__(self, question: str, task_id: str = None) -> str:
|
28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
+
|
30 |
+
# If task_id is provided, we'll include context about possible files
|
31 |
+
if task_id:
|
32 |
+
# Add context about files to the question
|
33 |
+
context = f"""Task ID: {task_id}
|
34 |
+
|
35 |
+
If you need files for this task, you can use the fetch_task_files tool with the task_id.
|
36 |
+
Example: fetch_task_files(task_id="{task_id}")
|
37 |
+
|
38 |
+
Question: {question}"""
|
39 |
+
|
40 |
+
answer = self.agent.run(context)
|
41 |
+
else:
|
42 |
+
answer = self.agent.run(question)
|
43 |
+
|
44 |
+
print(f"Agent returning answer: {answer}")
|
45 |
return answer
|
46 |
|
47 |
|
|
|
107 |
results_log = []
|
108 |
answers_payload = []
|
109 |
print(f"Running agent on {len(questions_data)} questions...")
|
110 |
+
for item in questions_data[3:4]:
|
111 |
task_id = item.get("task_id")
|
112 |
question_text = item.get("question")
|
113 |
if not task_id or question_text is None:
|
114 |
print(f"Skipping item with missing task_id or question: {item}")
|
115 |
continue
|
116 |
try:
|
117 |
+
# Pass both question text and task_id to the agent
|
118 |
+
submitted_answer = agent(question_text, task_id)
|
119 |
answers_payload.append(
|
120 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
121 |
)
|
requirements.in
CHANGED
@@ -1,5 +1,8 @@
|
|
|
|
1 |
duckduckgo_search>=7.0.0,<8.0.0
|
2 |
gradio[oauth]
|
|
|
3 |
requests
|
4 |
smolagents[gradio,litellm,openai,telemetry,toolkit,torch,transformers,vision]
|
5 |
wikipedia-api
|
|
|
|
1 |
+
av
|
2 |
duckduckgo_search>=7.0.0,<8.0.0
|
3 |
gradio[oauth]
|
4 |
+
pytube
|
5 |
requests
|
6 |
smolagents[gradio,litellm,openai,telemetry,toolkit,torch,transformers,vision]
|
7 |
wikipedia-api
|
8 |
+
yt-dlp
|
requirements.txt
CHANGED
@@ -47,6 +47,8 @@ authlib==1.5.2
|
|
47 |
# via
|
48 |
# arize-phoenix
|
49 |
# gradio
|
|
|
|
|
50 |
beautifulsoup4==4.13.4
|
51 |
# via markdownify
|
52 |
cachetools==5.5.2
|
@@ -353,6 +355,8 @@ python-multipart==0.0.20
|
|
353 |
# via
|
354 |
# arize-phoenix
|
355 |
# gradio
|
|
|
|
|
356 |
pytz==2025.2
|
357 |
# via pandas
|
358 |
pyyaml==6.0.2
|
@@ -526,5 +530,7 @@ wsproto==1.2.0
|
|
526 |
# via trio-websocket
|
527 |
yarl==1.20.0
|
528 |
# via aiohttp
|
|
|
|
|
529 |
zipp==3.21.0
|
530 |
# via importlib-metadata
|
|
|
47 |
# via
|
48 |
# arize-phoenix
|
49 |
# gradio
|
50 |
+
av==14.3.0
|
51 |
+
# via -r requirements.in
|
52 |
beautifulsoup4==4.13.4
|
53 |
# via markdownify
|
54 |
cachetools==5.5.2
|
|
|
355 |
# via
|
356 |
# arize-phoenix
|
357 |
# gradio
|
358 |
+
pytube==15.0.0
|
359 |
+
# via -r requirements.in
|
360 |
pytz==2025.2
|
361 |
# via pandas
|
362 |
pyyaml==6.0.2
|
|
|
530 |
# via trio-websocket
|
531 |
yarl==1.20.0
|
532 |
# via aiohttp
|
533 |
+
yt-dlp==2025.4.30
|
534 |
+
# via -r requirements.in
|
535 |
zipp==3.21.0
|
536 |
# via importlib-metadata
|
tools.py
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import openai
|
5 |
+
from openai import OpenAI
|
6 |
+
from smolagents import tool
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import functools
|
10 |
+
from typing import List, Optional, Dict, Any
|
11 |
+
import sys
|
12 |
+
|
13 |
+
import av
|
14 |
+
from yt_dlp import YoutubeDL
|
15 |
+
|
16 |
+
from PIL import Image
|
17 |
+
import wikipediaapi
|
18 |
+
import tempfile
|
19 |
+
|
20 |
+
model_id = "gpt-4.1"
|
21 |
+
|
22 |
+
|
23 |
+
@tool
|
24 |
+
def read_image(query: str, img_url: str) -> str:
|
25 |
+
"""
|
26 |
+
Use a visual question answering (VQA) model to generate a response to a query based on an image.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
query (str): A natural language question about the image.
|
30 |
+
img_url (str): The URL of the image to analyze.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
str: A response generated by the VQA model based on the provided image and question.
|
34 |
+
"""
|
35 |
+
client = OpenAI()
|
36 |
+
response = client.responses.create(
|
37 |
+
model=model_id,
|
38 |
+
input=[
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": [
|
42 |
+
{"type": "input_text", "text": query},
|
43 |
+
{
|
44 |
+
"type": "input_image",
|
45 |
+
"image_url": img_url,
|
46 |
+
},
|
47 |
+
],
|
48 |
+
}
|
49 |
+
],
|
50 |
+
)
|
51 |
+
return response.output_text
|
52 |
+
|
53 |
+
|
54 |
+
@tool
|
55 |
+
def read_code(file_url: str) -> str:
|
56 |
+
"""
|
57 |
+
Read the contents of a code file such as py file instead of executing it. Use this tool to analyze a code snippet.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
file_url (str): The URL of the code file to retrieve.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
str: The content of the file as a string.
|
64 |
+
"""
|
65 |
+
response = requests.get(file_url)
|
66 |
+
response.raise_for_status()
|
67 |
+
return response.text
|
68 |
+
|
69 |
+
|
70 |
+
@tool
|
71 |
+
def transcribe_audio(file_url: str, file_name: str) -> str:
|
72 |
+
"""
|
73 |
+
Download and transcribe an audio file using transcription model.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
file_url (str): Direct URL to the audio file (e.g., .mp3, .wav).
|
77 |
+
file_name (str): Filename including extension, used to determine format.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
str: The transcribed text from the audio file.
|
81 |
+
"""
|
82 |
+
# Download audio content
|
83 |
+
response = requests.get(file_url)
|
84 |
+
response.raise_for_status()
|
85 |
+
|
86 |
+
# Extract extension (fallback to mp3 if missing)
|
87 |
+
extension = file_name.split(".")[-1].lower() or "mp3"
|
88 |
+
|
89 |
+
# Wrap bytes in a file-like object with a valid name
|
90 |
+
audio_file = io.BytesIO(response.content)
|
91 |
+
audio_file.name = f"audio.{extension}"
|
92 |
+
|
93 |
+
# Create OpenAI client and transcribe
|
94 |
+
client = OpenAI()
|
95 |
+
transcription = client.audio.transcriptions.create(
|
96 |
+
model="gpt-4o-transcribe", file=audio_file
|
97 |
+
)
|
98 |
+
|
99 |
+
return transcription.text
|
100 |
+
|
101 |
+
|
102 |
+
### set of functions for youtube video processing
|
103 |
+
def _pytube_buffer(url: str) -> Optional[io.BytesIO]:
|
104 |
+
try:
|
105 |
+
from pytube import YouTube
|
106 |
+
|
107 |
+
yt = YouTube(url)
|
108 |
+
stream = (
|
109 |
+
yt.streams.filter(progressive=True, file_extension="mp4")
|
110 |
+
.order_by("resolution")
|
111 |
+
.desc()
|
112 |
+
.first()
|
113 |
+
)
|
114 |
+
if stream is None: # no progressive stream
|
115 |
+
raise RuntimeError("No MP4 with audio found")
|
116 |
+
buf = io.BytesIO()
|
117 |
+
stream.stream_to_buffer(buf) # PyTube’s built-in helper
|
118 |
+
buf.seek(0)
|
119 |
+
return buf
|
120 |
+
except Exception as e:
|
121 |
+
print(f"[youtube_to_buffer] PyTube failed → {e}", file=sys.stderr)
|
122 |
+
return None # trigger fallback
|
123 |
+
|
124 |
+
|
125 |
+
def _ytdlp_buffer(url: str) -> io.BytesIO:
|
126 |
+
"""
|
127 |
+
Return a BytesIO containing some MP4 video stream for `url`.
|
128 |
+
Works whether YouTube serves a progressive file or separate A/V.
|
129 |
+
"""
|
130 |
+
ydl_opts = {
|
131 |
+
"quiet": True,
|
132 |
+
"skip_download": True,
|
133 |
+
"format": "bestvideo[ext=mp4]/best[ext=mp4]/best",
|
134 |
+
}
|
135 |
+
with YoutubeDL(ydl_opts) as ydl:
|
136 |
+
info = ydl.extract_info(url, download=False)
|
137 |
+
if "entries" in info: # playlists
|
138 |
+
info = info["entries"][0]
|
139 |
+
|
140 |
+
if "url" in info:
|
141 |
+
video_urls = [info["url"]]
|
142 |
+
|
143 |
+
elif "requested_formats" in info:
|
144 |
+
video_urls = [
|
145 |
+
fmt["url"]
|
146 |
+
for fmt in info["requested_formats"]
|
147 |
+
if fmt.get("vcodec") != "none" # keep only video
|
148 |
+
]
|
149 |
+
if not video_urls:
|
150 |
+
raise RuntimeError("yt-dlp returned audio-only formats")
|
151 |
+
|
152 |
+
else:
|
153 |
+
raise RuntimeError("yt-dlp could not extract a stream URL")
|
154 |
+
|
155 |
+
buf = io.BytesIO()
|
156 |
+
for direct_url in video_urls:
|
157 |
+
with requests.get(direct_url, stream=True) as r:
|
158 |
+
r.raise_for_status()
|
159 |
+
for chunk in r.iter_content(chunk_size=1 << 16):
|
160 |
+
buf.write(chunk)
|
161 |
+
|
162 |
+
buf.seek(0)
|
163 |
+
return buf
|
164 |
+
|
165 |
+
|
166 |
+
@functools.lru_cache(maxsize=8) # tiny cache so repeat calls are fast
|
167 |
+
def youtube_to_buffer(url: str) -> io.BytesIO:
|
168 |
+
"""
|
169 |
+
|
170 |
+
Return a BytesIO containing a single progressive MP4
|
171 |
+
(H.264 + AAC) – the safest thing PyAV can open everywhere.
|
172 |
+
"""
|
173 |
+
ydl_opts = {
|
174 |
+
"quiet": True,
|
175 |
+
"skip_download": True,
|
176 |
+
# progressive (has both audio+video) • mp4 • h264
|
177 |
+
"format": (
|
178 |
+
"best[ext=mp4][vcodec^=avc1][acodec!=none]"
|
179 |
+
"/best[ext=mp4][acodec!=none]" # fallback: any prog-MP4
|
180 |
+
),
|
181 |
+
}
|
182 |
+
|
183 |
+
with YoutubeDL(ydl_opts) as ydl:
|
184 |
+
info = ydl.extract_info(url, download=False)
|
185 |
+
if "entries" in info: # playlists → first entry
|
186 |
+
info = info["entries"][0]
|
187 |
+
|
188 |
+
direct_url = info.get("url")
|
189 |
+
if not direct_url:
|
190 |
+
raise RuntimeError("yt-dlp could not find a progressive MP4 track")
|
191 |
+
|
192 |
+
# Stream it straight into RAM
|
193 |
+
buf = io.BytesIO()
|
194 |
+
with requests.get(direct_url, stream=True) as r:
|
195 |
+
r.raise_for_status()
|
196 |
+
for chunk in r.iter_content(chunk_size=1 << 17): # 128 kB
|
197 |
+
buf.write(chunk)
|
198 |
+
|
199 |
+
buf.seek(0)
|
200 |
+
return buf
|
201 |
+
|
202 |
+
|
203 |
+
def sample_frames(video_bytes: io.BytesIO, n_frames: int = 6) -> List[Image.Image]:
|
204 |
+
"""Decode `n_frames` uniformly spaced RGB frames as PIL images."""
|
205 |
+
container = av.open(video_bytes, metadata_errors="ignore")
|
206 |
+
video = container.streams.video[0]
|
207 |
+
total = video.frames or 0
|
208 |
+
|
209 |
+
# If PyAV couldn't count frames (‐1), fall back to timestamp spacing
|
210 |
+
step = max(1, total // n_frames) if total else 30
|
211 |
+
|
212 |
+
frames: list[Image.Image] = []
|
213 |
+
for i, frame in enumerate(container.decode(video=0)):
|
214 |
+
if i % step == 0:
|
215 |
+
frames.append(frame.to_image())
|
216 |
+
if len(frames) >= n_frames:
|
217 |
+
break
|
218 |
+
container.close()
|
219 |
+
return frames
|
220 |
+
|
221 |
+
|
222 |
+
def pil_to_data_url(img: Image.Image, quality: int = 80) -> str:
|
223 |
+
buf = io.BytesIO()
|
224 |
+
img.save(buf, format="JPEG", quality=quality, optimize=True)
|
225 |
+
b64 = base64.b64encode(buf.getvalue()).decode()
|
226 |
+
return f"data:image/jpeg;base64,{b64}"
|
227 |
+
|
228 |
+
|
229 |
+
def save_audio_stream_to_temp_wav_file(video_bytes: io.BytesIO) -> Optional[str]:
|
230 |
+
"""
|
231 |
+
Extracts the audio stream from video_bytes, saves it as a temporary WAV file,
|
232 |
+
and returns the path to the file.
|
233 |
+
Returns None if no audio stream is found or an error occurs.
|
234 |
+
"""
|
235 |
+
try:
|
236 |
+
video_bytes.seek(0) # Ensure buffer is at the beginning
|
237 |
+
input_container = av.open(video_bytes, metadata_errors="ignore")
|
238 |
+
|
239 |
+
if not input_container.streams.audio:
|
240 |
+
print("No audio streams found in the video.", file=sys.stderr)
|
241 |
+
return None
|
242 |
+
input_audio_stream = input_container.streams.audio[0]
|
243 |
+
|
244 |
+
# Create a temporary file with .wav suffix
|
245 |
+
# delete=False because we need to pass the path to another process (Whisper)
|
246 |
+
# and we will manually delete it later.
|
247 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
248 |
+
temp_audio_file_path = tmp_file.name
|
249 |
+
|
250 |
+
output_container = av.open(temp_audio_file_path, mode="w", format="wav")
|
251 |
+
|
252 |
+
# For WAV, a common codec is pcm_s16le (16-bit signed PCM).
|
253 |
+
# Use the input stream's sample rate.
|
254 |
+
# Determine channel layout (e.g., 'stereo', 'mono')
|
255 |
+
channel_layout = "stereo" # Default
|
256 |
+
if (
|
257 |
+
hasattr(input_audio_stream.codec_context, "layout")
|
258 |
+
and input_audio_stream.codec_context.layout
|
259 |
+
):
|
260 |
+
channel_layout = input_audio_stream.codec_context.layout.name
|
261 |
+
elif (
|
262 |
+
hasattr(input_audio_stream.codec_context, "channels")
|
263 |
+
and input_audio_stream.codec_context.channels == 1
|
264 |
+
):
|
265 |
+
channel_layout = "mono"
|
266 |
+
|
267 |
+
output_audio_stream = output_container.add_stream(
|
268 |
+
"pcm_s16le",
|
269 |
+
rate=input_audio_stream.codec_context.sample_rate,
|
270 |
+
layout=channel_layout,
|
271 |
+
)
|
272 |
+
|
273 |
+
for frame in input_container.decode(input_audio_stream):
|
274 |
+
# PyAV decodes audio into AudioFrame objects.
|
275 |
+
# These frames need to be encoded by the output stream's codec.
|
276 |
+
for packet in output_audio_stream.encode(frame):
|
277 |
+
output_container.mux(packet)
|
278 |
+
|
279 |
+
# Flush any remaining frames from the encoder
|
280 |
+
for packet in output_audio_stream.encode():
|
281 |
+
output_container.mux(packet)
|
282 |
+
|
283 |
+
output_container.close()
|
284 |
+
input_container.close()
|
285 |
+
return temp_audio_file_path
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
print(f"Error extracting audio to temp WAV file: {e}", file=sys.stderr)
|
289 |
+
# Clean up if temp file path was assigned and file exists
|
290 |
+
if "temp_audio_file_path" in locals() and os.path.exists(temp_audio_file_path):
|
291 |
+
os.remove(temp_audio_file_path)
|
292 |
+
return None
|
293 |
+
|
294 |
+
|
295 |
+
@tool
|
296 |
+
def run_video(query: str, url: str) -> str:
|
297 |
+
"""
|
298 |
+
Get a YouTube video from url and return an answer to a natural-language query using the video.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
query (str): A natural-language question whose answer is expected to be found in the visual content of the video.
|
302 |
+
url (str): Fully qualified URL of the YouTube video to analyze.
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
str: A response generated by the VQA model based on the provided video and question.
|
306 |
+
"""
|
307 |
+
n_frames = 4
|
308 |
+
buff = youtube_to_buffer(url)
|
309 |
+
if buff is None:
|
310 |
+
return "Error: Could not download or buffer the video."
|
311 |
+
|
312 |
+
# 1. Sample visual frames
|
313 |
+
frames = sample_frames(buff, n_frames=n_frames)
|
314 |
+
buff.seek(0) # Reset buffer pointer for audio extraction
|
315 |
+
|
316 |
+
# 2. Extract and Transcribe Audio
|
317 |
+
transcript = "[Audio could not be processed]"
|
318 |
+
audio_file_path = None
|
319 |
+
try:
|
320 |
+
audio_file_path = save_audio_stream_to_temp_wav_file(buff)
|
321 |
+
if audio_file_path:
|
322 |
+
with open(audio_file_path, "rb") as audio_data:
|
323 |
+
# Make sure you have the OpenAI client initialized, e.g., client = openai.OpenAI()
|
324 |
+
transcription_response = openai.audio.transcriptions.create(
|
325 |
+
model="gpt-4o-transcribe", file=audio_data
|
326 |
+
)
|
327 |
+
transcript = transcription_response.text
|
328 |
+
else:
|
329 |
+
transcript = "[No audio stream found or error during extraction]"
|
330 |
+
print(
|
331 |
+
"No audio file path returned, skipping transcription.", file=sys.stderr
|
332 |
+
)
|
333 |
+
except Exception as e:
|
334 |
+
print(f"Error during audio transcription: {e}", file=sys.stderr)
|
335 |
+
transcript = f"[Error during audio transcription: {e}]"
|
336 |
+
finally:
|
337 |
+
if audio_file_path and os.path.exists(audio_file_path):
|
338 |
+
os.remove(audio_file_path) # Clean up the temporary audio file
|
339 |
+
|
340 |
+
# 3. Prepare content for the AI model (text query, transcript, and images)
|
341 |
+
prompt_text = f"Original Query: {query}\n\nVideo Transcript:\n{transcript}\n\nKey Visual Frames (analyze these along with the transcript to answer the query):"
|
342 |
+
|
343 |
+
content = [{"type": "text", "text": prompt_text}]
|
344 |
+
|
345 |
+
for img in frames:
|
346 |
+
content.append(
|
347 |
+
{
|
348 |
+
"type": "image_url",
|
349 |
+
"image_url": {"url": pil_to_data_url(img)},
|
350 |
+
}
|
351 |
+
)
|
352 |
+
|
353 |
+
# 4. Send to AI model
|
354 |
+
try:
|
355 |
+
resp = openai.chat.completions.create(
|
356 |
+
model=model_id,
|
357 |
+
messages=[{"role": "user", "content": content}],
|
358 |
+
temperature=0.1,
|
359 |
+
)
|
360 |
+
result = resp.choices[0].message.content.strip()
|
361 |
+
except Exception as e:
|
362 |
+
print(f"Error calling OpenAI API: {e}", file=sys.stderr)
|
363 |
+
result = f"[Error processing with AI model: {e}]"
|
364 |
+
|
365 |
+
return result
|
366 |
+
|
367 |
+
|
368 |
+
## Read video only, ignore audio
|
369 |
+
# @tool
|
370 |
+
# def run_video(query: str, url: str) -> str:
|
371 |
+
# """
|
372 |
+
# Get a YouTube video from url and return an answer to a natural-language query using the video.
|
373 |
+
|
374 |
+
# Args:
|
375 |
+
# query (str): A natural-language question whose answer is expected to be found in the visual content of the video.
|
376 |
+
# url (str): Fully qualified URL of the YouTube video to analyze.
|
377 |
+
|
378 |
+
# Returns:
|
379 |
+
# str: A response generated by the VQA model based on the provided video and question.
|
380 |
+
# """
|
381 |
+
# buff = youtube_to_buffer(url)
|
382 |
+
# n_frames = 8
|
383 |
+
# frames = sample_frames(buff, n_frames=n_frames)
|
384 |
+
|
385 |
+
# content = [{"type": "text", "text": query}] + [
|
386 |
+
# {
|
387 |
+
# "type": "image_url",
|
388 |
+
# "image_url": {"url": pil_to_data_url(img)},
|
389 |
+
# }
|
390 |
+
# for img in frames
|
391 |
+
# ]
|
392 |
+
|
393 |
+
# resp = openai.chat.completions.create(
|
394 |
+
# model="gpt-4.1-mini",
|
395 |
+
# messages=[{"role": "user", "content": content}],
|
396 |
+
# temperature=0.1,
|
397 |
+
# )
|
398 |
+
# return resp.choices[0].message.content.strip()
|
399 |
+
|
400 |
+
|
401 |
+
# Helper functions for processing different file types
|
402 |
+
def process_image(response, filename, content_type):
|
403 |
+
"""Process image files - convert to base64 data URL for vision models"""
|
404 |
+
img_data = base64.b64encode(response.content).decode("utf-8")
|
405 |
+
data_url = f"data:{content_type};base64,{img_data}"
|
406 |
+
|
407 |
+
return {
|
408 |
+
"file_type": "image",
|
409 |
+
"filename": filename,
|
410 |
+
"content_type": content_type,
|
411 |
+
"data_url": data_url,
|
412 |
+
}
|
413 |
+
|
414 |
+
|
415 |
+
def process_audio(response, filename, content_type):
|
416 |
+
"""Process audio files - either return data URL or save to temp file for processing"""
|
417 |
+
audio_data = base64.b64encode(response.content).decode("utf-8")
|
418 |
+
data_url = f"data:{content_type};base64,{audio_data}"
|
419 |
+
|
420 |
+
# For compatibility with audio processing tools, save to temp file
|
421 |
+
audio_file = io.BytesIO(response.content)
|
422 |
+
extension = os.path.splitext(filename)[1].lower() or ".mp3"
|
423 |
+
audio_file.name = f"audio{extension}" # Some libraries need filename
|
424 |
+
|
425 |
+
return {
|
426 |
+
"file_type": "audio",
|
427 |
+
"filename": filename,
|
428 |
+
"content_type": content_type,
|
429 |
+
"data_url": data_url,
|
430 |
+
"audio_buffer": audio_file, # Include buffer for processing
|
431 |
+
}
|
432 |
+
|
433 |
+
|
434 |
+
def process_video(response, filename, content_type):
|
435 |
+
"""Process video files - save to buffer and extract frames"""
|
436 |
+
video_buffer = io.BytesIO(response.content)
|
437 |
+
|
438 |
+
# Option to extract frames - similar to what run_video does
|
439 |
+
try:
|
440 |
+
frames = sample_frames(video_buffer, n_frames=4) # Reuse existing function
|
441 |
+
frame_urls = [pil_to_data_url(img) for img in frames]
|
442 |
+
frame_extraction_success = True
|
443 |
+
except Exception:
|
444 |
+
frame_urls = []
|
445 |
+
frame_extraction_success = False
|
446 |
+
|
447 |
+
return {
|
448 |
+
"file_type": "video",
|
449 |
+
"filename": filename,
|
450 |
+
"content_type": content_type,
|
451 |
+
"video_buffer": video_buffer,
|
452 |
+
"frame_urls": frame_urls,
|
453 |
+
"frames_extracted": frame_extraction_success,
|
454 |
+
}
|
455 |
+
|
456 |
+
|
457 |
+
def process_tabular(response, filename, content_type):
|
458 |
+
"""Process spreadsheet files using pandas"""
|
459 |
+
excel_buffer = io.BytesIO(response.content)
|
460 |
+
|
461 |
+
try:
|
462 |
+
# Determine format based on extension
|
463 |
+
if filename.lower().endswith(".csv"):
|
464 |
+
df = pd.read_csv(excel_buffer)
|
465 |
+
else: # Excel formats
|
466 |
+
df = pd.read_excel(excel_buffer)
|
467 |
+
|
468 |
+
return {
|
469 |
+
"file_type": "tabular",
|
470 |
+
"filename": filename,
|
471 |
+
"content_type": content_type,
|
472 |
+
"data": df.to_dict(orient="records"),
|
473 |
+
"columns": df.columns.tolist(),
|
474 |
+
"shape": df.shape,
|
475 |
+
}
|
476 |
+
except Exception as e:
|
477 |
+
# Fallback if parsing fails
|
478 |
+
return {
|
479 |
+
"file_type": "tabular",
|
480 |
+
"filename": filename,
|
481 |
+
"content_type": content_type,
|
482 |
+
"error": f"Failed to parse tabular data: {e}",
|
483 |
+
"raw_data": base64.b64encode(response.content).decode("utf-8"),
|
484 |
+
}
|
485 |
+
|
486 |
+
|
487 |
+
def process_text(response, filename, content_type):
|
488 |
+
"""Process text files (code, plain text, etc.)"""
|
489 |
+
try:
|
490 |
+
text_content = response.text
|
491 |
+
return {
|
492 |
+
"file_type": "text",
|
493 |
+
"filename": filename,
|
494 |
+
"content_type": content_type,
|
495 |
+
"content": text_content,
|
496 |
+
"extension": os.path.splitext(filename)[
|
497 |
+
1
|
498 |
+
], # Useful for syntax highlighting
|
499 |
+
}
|
500 |
+
except Exception as e:
|
501 |
+
return {
|
502 |
+
"file_type": "text",
|
503 |
+
"filename": filename,
|
504 |
+
"content_type": content_type,
|
505 |
+
"error": f"Failed to decode text: {e}",
|
506 |
+
"raw_data": base64.b64encode(response.content).decode("utf-8"),
|
507 |
+
}
|
508 |
+
|
509 |
+
|
510 |
+
def process_json(response, filename, content_type):
|
511 |
+
"""Process JSON data"""
|
512 |
+
try:
|
513 |
+
json_data = response.json()
|
514 |
+
return {
|
515 |
+
"file_type": "json",
|
516 |
+
"filename": filename,
|
517 |
+
"content_type": content_type,
|
518 |
+
"data": json_data,
|
519 |
+
}
|
520 |
+
except Exception:
|
521 |
+
# Try as text if JSON parsing fails
|
522 |
+
return process_text(response, filename, content_type)
|
523 |
+
|
524 |
+
|
525 |
+
def process_pdf(response, filename, content_type):
|
526 |
+
"""Process PDF files - return as binary with metadata"""
|
527 |
+
# Simple version - just return binary for now
|
528 |
+
# Could be enhanced with PDF text extraction libraries
|
529 |
+
pdf_data = base64.b64encode(response.content).decode("utf-8")
|
530 |
+
|
531 |
+
return {
|
532 |
+
"file_type": "pdf",
|
533 |
+
"filename": filename,
|
534 |
+
"content_type": content_type,
|
535 |
+
"data": pdf_data,
|
536 |
+
}
|
537 |
+
|
538 |
+
|
539 |
+
def process_binary(response, filename, content_type):
|
540 |
+
"""Process other binary files (fallback handler)"""
|
541 |
+
binary_data = base64.b64encode(response.content).decode("utf-8")
|
542 |
+
|
543 |
+
return {
|
544 |
+
"file_type": "binary",
|
545 |
+
"filename": filename,
|
546 |
+
"content_type": content_type,
|
547 |
+
"data": binary_data,
|
548 |
+
}
|
549 |
+
|
550 |
+
|
551 |
+
@tool
|
552 |
+
def fetch_task_files(task_id: str) -> Dict[str, Any]:
|
553 |
+
"""
|
554 |
+
Download files associated with a specific task from the API.
|
555 |
+
|
556 |
+
Args:
|
557 |
+
task_id (str): The Task-ID of the task to download files for.
|
558 |
+
|
559 |
+
Returns:
|
560 |
+
dict: A dictionary containing file information and data in appropriate format for the file type
|
561 |
+
"""
|
562 |
+
api_base_url: str = "https://agents-course-unit4-scoring.hf.space"
|
563 |
+
files_url = f"{api_base_url}/files/{task_id}"
|
564 |
+
|
565 |
+
try:
|
566 |
+
response = requests.get(files_url, timeout=15)
|
567 |
+
response.raise_for_status()
|
568 |
+
|
569 |
+
# Extract metadata
|
570 |
+
content_type = response.headers.get("Content-Type", "").lower()
|
571 |
+
filename = response.headers.get("content-disposition", "")
|
572 |
+
if "filename=" in filename:
|
573 |
+
filename = filename.split("filename=")[-1].strip('"')
|
574 |
+
else:
|
575 |
+
filename = f"{task_id}.bin" # Default filename
|
576 |
+
|
577 |
+
print(f"Received file: {filename}, type: {content_type}")
|
578 |
+
|
579 |
+
# Route to appropriate helper based on content type or file extension
|
580 |
+
if "image/" in content_type or any(
|
581 |
+
filename.lower().endswith(ext) for ext in [".png", ".jpg", ".jpeg", ".gif"]
|
582 |
+
):
|
583 |
+
return process_image(response, filename, content_type)
|
584 |
+
|
585 |
+
elif "audio/" in content_type or any(
|
586 |
+
filename.lower().endswith(ext) for ext in [".mp3", ".wav", ".ogg"]
|
587 |
+
):
|
588 |
+
return process_audio(response, filename, content_type)
|
589 |
+
|
590 |
+
elif "video/" in content_type or any(
|
591 |
+
filename.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov"]
|
592 |
+
):
|
593 |
+
return process_video(response, filename, content_type)
|
594 |
+
|
595 |
+
elif (
|
596 |
+
"spreadsheet" in content_type
|
597 |
+
or "excel" in content_type
|
598 |
+
or any(filename.lower().endswith(ext) for ext in [".xlsx", ".xls", ".csv"])
|
599 |
+
):
|
600 |
+
return process_tabular(response, filename, content_type)
|
601 |
+
|
602 |
+
elif (
|
603 |
+
"text/" in content_type
|
604 |
+
or "code" in content_type
|
605 |
+
or any(
|
606 |
+
filename.lower().endswith(ext)
|
607 |
+
for ext in [".txt", ".py", ".js", ".html", ".md"]
|
608 |
+
)
|
609 |
+
):
|
610 |
+
return process_text(response, filename, content_type)
|
611 |
+
|
612 |
+
elif "application/json" in content_type or filename.lower().endswith(".json"):
|
613 |
+
return process_json(response, filename, content_type)
|
614 |
+
|
615 |
+
elif "application/pdf" in content_type or filename.lower().endswith(".pdf"):
|
616 |
+
return process_pdf(response, filename, content_type)
|
617 |
+
|
618 |
+
else:
|
619 |
+
# Default fallback for binary files
|
620 |
+
return process_binary(response, filename, content_type)
|
621 |
+
|
622 |
+
except requests.exceptions.RequestException as e:
|
623 |
+
print(f"Error fetching files for task {task_id}: {e}")
|
624 |
+
return {"error": f"Error fetching files: {e}"}
|
625 |
+
except Exception as e:
|
626 |
+
print(f"An unexpected error occurred fetching files for task {task_id}: {e}")
|
627 |
+
return {"error": f"An unexpected error occurred: {e}"}
|
628 |
+
|
629 |
+
|
630 |
+
@tool
|
631 |
+
def search_wikipedia(query: str) -> str:
|
632 |
+
"""
|
633 |
+
get the contents of wikipedia page retrieved by search query.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
query (str): A search term to search within wikipedia. Ideally it should be one word or a group of few words.
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
str: The text content of wikipedia page
|
640 |
+
"""
|
641 |
+
get_wiki = wikipediaapi.Wikipedia(
|
642 |
+
language="en",
|
643 |
+
user_agent="test_tokki",
|
644 |
+
extract_format=wikipediaapi.ExtractFormat.WIKI,
|
645 |
+
)
|
646 |
+
page_content = get_wiki.page(query)
|
647 |
+
text_content = page_content.text
|
648 |
+
|
649 |
+
cutoff = 25000
|
650 |
+
text_content = " ".join(text_content.split(" ")[:cutoff])
|
651 |
+
return text_content
|
652 |
+
|
653 |
+
|
654 |
+
if __name__ == "__main__":
|
655 |
+
# Simple test for fetch_task_files
|
656 |
+
task_ids = [
|
657 |
+
"cca530fc-4052-43b2-b130-b30968d8aa44",
|
658 |
+
"99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3",
|
659 |
+
"7bd855d8-463d-4ed5-93ca-5fe35145f733",
|
660 |
+
]
|
661 |
+
for task_id in task_ids:
|
662 |
+
print(
|
663 |
+
"=" * 20
|
664 |
+
+ " "
|
665 |
+
+ f"Testing fetch_task_files with task_id: {task_id}"
|
666 |
+
+ " "
|
667 |
+
+ "=" * 20
|
668 |
+
)
|
669 |
+
|
670 |
+
result = fetch_task_files(task_id)
|
671 |
+
print(f"File type: {result.get('file_type')}")
|
672 |
+
print(f"Filename: {result.get('filename')}")
|