Kai Jennissen commited on
Commit
b4ade25
·
unverified ·
1 Parent(s): 81917a3

first_agent

Browse files
Files changed (2) hide show
  1. app.py +72 -29
  2. requirements.txt +2 -1
app.py CHANGED
@@ -3,32 +3,54 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
 
11
  # --- Basic Agent Definition ---
12
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
 
 
 
 
 
 
 
 
13
  class BasicAgent:
14
  def __init__(self):
 
15
  print("BasicAgent initialized.")
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -55,16 +77,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -81,18 +103,36 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
81
  continue
82
  try:
83
  submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
 
 
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
98
 
@@ -162,20 +202,19 @@ with gr.Blocks() as demo:
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
 
166
  # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,14 +222,18 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
7
 
8
  # (Keep Constants as is)
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
+
13
  # --- Basic Agent Definition ---
14
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
15
+ def get_agent():
16
+ llm = HfApiModel()
17
+ agent = CodeAgent(
18
+ tools=[DuckDuckGoSearchTool()],
19
+ model=llm,
20
+ )
21
+ return agent
22
+
23
+
24
  class BasicAgent:
25
  def __init__(self):
26
+ self.agent = get_agent()
27
  print("BasicAgent initialized.")
28
+
29
  def __call__(self, question: str) -> str:
30
  print(f"Agent received question (first 50 chars): {question[:50]}...")
31
+ answer = self.agent.run(question)
32
+ print(f"Agent returning fixed answer: {answer}")
33
+ return answer
34
+
35
 
36
+ # Brainstorming: Which tools should be available to the agent?
37
+ # Vistion
38
+ # Web-Search
39
+ # Helium
40
+ # MultiAgents for different tasks? One for Web-Search, one for Vistion, etc... and the Manager to genrate the final answer?
41
+ # Langfuse for Monitoring?
42
+
43
+
44
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
45
  """
46
  Fetches all questions, runs the BasicAgent on them, submits all answers,
47
  and displays the results.
48
  """
49
  # --- Determine HF Space Runtime URL and Repo URL ---
50
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
51
 
52
  if profile:
53
+ username = f"{profile.username}"
54
  print(f"User logged in: {username}")
55
  else:
56
  print("User not logged in.")
 
77
  response.raise_for_status()
78
  questions_data = response.json()
79
  if not questions_data:
80
+ print("Fetched questions list is empty.")
81
+ return "Fetched questions list is empty or invalid format.", None
82
  print(f"Fetched {len(questions_data)} questions.")
83
  except requests.exceptions.RequestException as e:
84
  print(f"Error fetching questions: {e}")
85
  return f"Error fetching questions: {e}", None
86
  except requests.exceptions.JSONDecodeError as e:
87
+ print(f"Error decoding JSON response from questions endpoint: {e}")
88
+ print(f"Response text: {response.text[:500]}")
89
+ return f"Error decoding server response for questions: {e}", None
90
  except Exception as e:
91
  print(f"An unexpected error occurred fetching questions: {e}")
92
  return f"An unexpected error occurred fetching questions: {e}", None
 
103
  continue
104
  try:
105
  submitted_answer = agent(question_text)
106
+ answers_payload.append(
107
+ {"task_id": task_id, "submitted_answer": submitted_answer}
108
+ )
109
+ results_log.append(
110
+ {
111
+ "Task ID": task_id,
112
+ "Question": question_text,
113
+ "Submitted Answer": submitted_answer,
114
+ }
115
+ )
116
  except Exception as e:
117
+ print(f"Error running agent on task {task_id}: {e}")
118
+ results_log.append(
119
+ {
120
+ "Task ID": task_id,
121
+ "Question": question_text,
122
+ "Submitted Answer": f"AGENT ERROR: {e}",
123
+ }
124
+ )
125
 
126
  if not answers_payload:
127
  print("Agent did not produce any answers to submit.")
128
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
129
 
130
+ # 4. Prepare Submission
131
+ submission_data = {
132
+ "username": username.strip(),
133
+ "agent_code": agent_code,
134
+ "answers": answers_payload,
135
+ }
136
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
137
  print(status_update)
138
 
 
202
 
203
  run_button = gr.Button("Run Evaluation & Submit All Answers")
204
 
205
+ status_output = gr.Textbox(
206
+ label="Run Status / Submission Result", lines=5, interactive=False
207
+ )
208
  # Removed max_rows=10 from DataFrame constructor
209
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
210
 
211
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
212
 
213
  if __name__ == "__main__":
214
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
215
  # Check for SPACE_HOST and SPACE_ID at startup for information
216
  space_host_startup = os.getenv("SPACE_HOST")
217
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
218
 
219
  if space_host_startup:
220
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
222
  else:
223
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
224
 
225
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
226
  print(f"✅ SPACE_ID found: {space_id_startup}")
227
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
228
+ print(
229
+ f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
230
+ )
231
  else:
232
+ print(
233
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
234
+ )
235
 
236
+ print("-" * (60 + len(" App Starting ")) + "\n")
237
 
238
  print("Launching Gradio Interface for Basic Agent Evaluation...")
239
+ demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
  gradio
2
- requests
 
 
1
  gradio
2
+ requests
3
+ smolagents