File size: 11,905 Bytes
73adc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6acaed
73adc36
 
 
 
 
 
 
b6acaed
73adc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23f0448
0a35c11
 
 
23f0448
73adc36
0a35c11
23f0448
73adc36
23f0448
73adc36
 
23f0448
5484928
73adc36
 
 
0a35c11
 
73adc36
 
 
 
95be10d
73adc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23f0448
73adc36
 
23f0448
73adc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55fbb52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import gradio as gr
import pandas as pd
from pathlib import Path
import plotly.express as px
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import base64


def restart_space():
    API.restart_space(repo_id=REPO_ID)



def make_rate_chart(df: pd.DataFrame):
    """Return a Plotly bar chart of hallucination rates."""
    # long-form dataframe for grouped bars
    df_long = df.melt(
        id_vars="Models",
        value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
        var_name="Benchmark",
        value_name="Rate",
    )
    fig = px.bar(
        df_long,
        x="Models",
        y="Rate",
        color="Benchmark",
        barmode="group",
        title="Hallucination Rates by Model",
        height=400,
    )
    fig.update_layout(xaxis_title="", yaxis_title="%")
    return fig

def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
    """

    Return a horizontal bar chart sorted ascending by `col`.

    Lowest value (best) at the top.

    """
    df_sorted = df.sort_values(col, ascending=False)           # best β†’ worst
    fig = px.bar(
        df_sorted,
        x=col,
        y="Models",
        orientation="h",
        title=title,
        text_auto=".2f",
        height=400,
        color_discrete_sequence=[bar_color],
    )
    fig.update_traces(textposition="outside", cliponaxis=False)

    fig.update_layout(
        xaxis_title="Hallucination Rate (%)",
        yaxis_title="",
        yaxis=dict(dtick=1),   # ensure every model shown
        margin=dict(l=140, r=60, t=60, b=40)
    )
    fig.update_traces(textposition="outside")
    return fig


def color_scale(s, cmap):
    """

    Return background-colour styles for a numeric Series (lower = greener,

    higher = redder). Works with any palette length.

    """
    colours = px.colors.sequential.__dict__[cmap]
    n = len(colours) - 1                     # max valid index

    rng = s.max() - s.min()
    norm = (s - s.min()) / (rng if rng else 1)

    return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]


### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    # restart_space()
    print(f"[WARN] Skipping RESULTS sync: {Exception}")
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    # restart_space()
    print(f"[WARN] Skipping RESULTS sync: {Exception}")


# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(df: pd.DataFrame):
    if df is None or df.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=df,
        datatype=["markdown", "markdown", "number", "number", "number"],  
        select_columns=SelectColumns(
            default_selection=[
                "Rank", "Models",
                "Average Hallucination Rate (%)",
                "RAG Hallucination Rate (%)",
                "Non-RAG Hallucination Rate (%)"
            ],
            cant_deselect=["Models", "Rank"],
            label="Select Columns to Display:",
        ),
        search_columns=["Models"],
        # column_widths=["3%"],   
        bool_checkboxgroup_label=None,
        interactive=False,
    )

image_path = "static/kluster-color.png"
with open(image_path, "rb") as img_file:
    b64_string = base64.b64encode(img_file.read()).decode("utf-8")


# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(f"""

        <div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">

            <img src="data:image/png;base64,{b64_string}" alt="kluster.ai logo"

                style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />

            

            <div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em; color: var(--text-color);">

                LLM Hallucination Detection Leaderboard

            </div>

            

            <div style="font-size: 1.5em; margin-top: 0.5em;">

                Evaluating factual accuracy and faithfulness of LLMs in both RAG and real-world knowledge settings with

                <a href="https://platform.kluster.ai/verify" target="_blank">

                    Verify

                </a> by

                <a href="https://platform.kluster.ai/" target="_blank">

                    kluster.ai

                </a>

            </div>

        </div>

        """)


    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Hallucination Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            # ----------  Chart  ----------
            with gr.Row():
                gr.Plot(
                    make_leaderboard_plot(
                        LEADERBOARD_DF,
                        "RAG Hallucination Rate (%)",
                        "RAG Hallucination Rate (lower is better)",
                        bar_color="#4CAF50",
                    ),
                    show_label=False,
                )
                gr.Plot(
                    make_leaderboard_plot(
                        LEADERBOARD_DF,
                        "Non-RAG Hallucination Rate (%)",
                        "Non-RAG Hallucination Rate (lower is better)",
                        bar_color="#FF7043",
                    ),
                    show_label=False,
                )

            # ----------  Leaderboard  ----------
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ Details", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown((Path(__file__).parent / "docs.md").read_text())

        with gr.TabItem("πŸš€ Submit Here! ", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown((Path(__file__).parent / "submit.md").read_text())

            # with gr.Column():
            #     with gr.Row():
            #         gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            #     with gr.Column():
            #         with gr.Accordion(
            #             f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 finished_eval_table = gr.components.Dataframe(
            #                     value=finished_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            #         with gr.Accordion(
            #             f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 running_eval_table = gr.components.Dataframe(
            #                     value=running_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )

            #         with gr.Accordion(
            #             f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 pending_eval_table = gr.components.Dataframe(
            #                     value=pending_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            # with gr.Row():
            #     gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            # with gr.Row():
            #     with gr.Column():
            #         model_name_textbox = gr.Textbox(label="Model name")
            #         revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
            #         model_type = gr.Dropdown(
            #             choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
            #             label="Model type",
            #             multiselect=False,
            #             value=None,
            #             interactive=True,
            #         )

            #     with gr.Column():
            #         precision = gr.Dropdown(
            #             choices=[i.value.name for i in Precision if i != Precision.Unknown],
            #             label="Precision",
            #             multiselect=False,
            #             value="float16",
            #             interactive=True,
            #         )
            #         weight_type = gr.Dropdown(
            #             choices=[i.value.name for i in WeightType],
            #             label="Weights type",
            #             multiselect=False,
            #             value="Original",
            #             interactive=True,
            #         )
            #         base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            # submit_button = gr.Button("Submit Eval")
            # submission_result = gr.Markdown()
            # submit_button.click(
            #     add_new_eval,
            #     [
            #         model_name_textbox,
            #         base_model_name_textbox,
            #         revision_name_textbox,
            #         precision,
            #         weight_type,
            #         model_type,
            #     ],
            #     submission_result,
            # )

    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()