File size: 14,884 Bytes
c9518d2
 
 
 
 
 
 
5fad2f1
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61a18
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0d8a2
 
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0d8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61a18
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676fa45
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fad2f1
c9518d2
a9acf87
c9518d2
 
 
 
 
 
 
3ed1a89
c9518d2
 
a9d1818
 
 
 
 
 
 
 
 
 
db0d8a2
a9d1818
 
 
 
 
 
 
 
 
 
db0d8a2
c9518d2
 
 
 
5fad2f1
db0d8a2
5fad2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0d8a2
 
 
6a61a18
 
db0d8a2
 
6a61a18
db0d8a2
6a61a18
db0d8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61a18
 
 
 
 
 
 
 
db0d8a2
 
 
6a61a18
 
 
 
 
 
 
 
 
 
db0d8a2
 
6a61a18
 
 
c9518d2
6a61a18
3ed1a89
c9518d2
db0d8a2
c9518d2
 
 
cade2b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import gradio as gr
import pandas as pd
from pathlib import Path
import plotly.express as px
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import textwrap

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_rag_leaderboard_df
from src.submission.submit import add_new_eval
import base64


def restart_space():
    API.restart_space(repo_id=REPO_ID)



def make_rate_chart(df: pd.DataFrame):
    """Return a Plotly bar chart of hallucination rates."""
    # long-form dataframe for grouped bars
    df_long = df.melt(
        id_vars="Models",
        value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
        var_name="Benchmark",
        value_name="Rate",
    )
    fig = px.bar(
        df_long,
        x="Models",
        y="Rate",
        color="Benchmark",
        barmode="group",
        title="Hallucination Rates by Model",
        height=400,
    )
    fig.update_layout(xaxis_title="", yaxis_title="%")
    return fig

def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):

    df_sorted = df.sort_values(col, ascending=False)          
    fig = px.bar(
        df_sorted,
        x=col,
        y="Models",
        orientation="h",
        title=title,
        text_auto=".2f",
        height=400,
        color_discrete_sequence=[bar_color],
    )
    fig.update_traces(textposition="outside", cliponaxis=False)

    fig.update_layout(
        xaxis_title="Hallucination Rate (%)",
        yaxis_title="",
        yaxis=dict(dtick=1),   # ensure every model shown
        margin=dict(l=140, r=60, t=60, b=40)
    )
    fig.update_traces(textposition="outside")
    return fig


def make_rag_average_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
    rag_cols = [
        "Context in System Prompt (%)",
        "Context and Question Single-Turn (%)",
        "Context and Question Two-Turns (%)",
    ]

    df_plot = df.copy()
    if col not in df_plot.columns:
        df_plot[col] = df_plot[rag_cols].mean(axis=1, skipna=True).round(2)

    df_plot["Std Dev"] = df_plot[rag_cols].std(axis=1, skipna=True).round(2)

    df_sorted = df_plot.sort_values(col, ascending=False)

    fig = px.bar(
        df_sorted,
        x=col,
        y="Models",
        orientation="h",
        title=title,
        height=400,
        color_discrete_sequence=[bar_color],
        error_x="Std Dev",
    )
    fig.update_traces(
        texttemplate="%{x:.2f}",
        textposition="inside",
        insidetextanchor="middle",
        cliponaxis=False,
    )
    fig.update_layout(
        xaxis_title="Hallucination Rate (%)",
        yaxis_title="",
        yaxis=dict(dtick=1),
        margin=dict(l=140, r=60, t=60, b=40),
    )
    return fig


def make_rag_method_average_plot(df: pd.DataFrame, title: str, bar_color: str):
    method_cols = [
        "Context in System Prompt (%)",
        "Context and Question Single-Turn (%)",
        "Context and Question Two-Turns (%)",
    ]

    averages = df[method_cols].mean().round(2)
    stds = df[method_cols].std().round(2)

    avg_df = pd.DataFrame(
        {
            "RAG Method": averages.index,
            "Average Hallucination Rate (%)": averages.values,
            "Std Dev": stds.values,
        }
    )

    fig = px.bar(
        avg_df,
        x="RAG Method",
        y="Average Hallucination Rate (%)",
        error_y="Std Dev",
        title=title,
        height=400,
        color_discrete_sequence=[bar_color],
    )
    fig.update_traces(
        texttemplate="%{y:.2f}" if 'orientation' not in fig.data[0] or fig.data[0].orientation == 'v' else "%{x:.2f}",
        textposition="inside",
        insidetextanchor="start", 
        cliponaxis=False,
        textfont_color="white",
    )
    labels_map = {
        "Context in System Prompt (%)": "Context in<br>System Prompt",
        "Context and Question Single-Turn (%)": "Context & Question<br>Single-Turn",
        "Context and Question Two-Turns (%)": "Context & Question<br>Two-Turns",
    }
    fig.update_xaxes(
        tickmode="array",
        tickvals=list(labels_map.keys()),
        ticktext=list(labels_map.values()),
        tickangle=0,
        automargin=True,
    )
    fig.update_layout(
        xaxis_title="",
        yaxis_title="Hallucination Rate (%)",
        margin=dict(l=40, r=100, t=60, b=120), 
    )
    return fig


def color_scale(s, cmap):
    """
    Return background-colour styles for a numeric Series (lower = greener,
    higher = redder). Works with any palette length.
    """
    colours = px.colors.sequential.__dict__[cmap]
    n = len(colours) - 1                     # max valid index

    rng = s.max() - s.min()
    norm = (s - s.min()) / (rng if rng else 1)

    return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]


### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    # restart_space()
    print(f"[WARN] Skipping RESULTS sync: {Exception}")
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    # restart_space()
    print(f"[WARN] Skipping RESULTS sync: {Exception}")


LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
RAG_DF = get_rag_leaderboard_df("leaderboard/data/rag_methods_compare.csv")


def init_leaderboard(df: pd.DataFrame):
    if df is None or df.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=df,
        datatype=["markdown", "markdown", "number", "number", "number"],  
        select_columns=SelectColumns(
            default_selection=[
                "Rank", "Models",
                "Average Hallucination Rate (%)",
                "RAG Hallucination Rate (%)",
                "Non-RAG Hallucination Rate (%)"
            ],
            cant_deselect=["Models", "Rank"],
            label="Select Columns to Display:",
        ),
        search_columns=["Models"],
        # column_widths=["3%"],   
        bool_checkboxgroup_label=None,
        interactive=False,
        height=800 
    )

image_path = "static/kluster-color.png"
with open(image_path, "rb") as img_file:
    b64_string = base64.b64encode(img_file.read()).decode("utf-8")


# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(f"""
        <div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">
            <img src="data:image/png;base64,{b64_string}" alt="kluster.ai logo"
                style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />
            
            <div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em; color: var(--text-color);">
                LLM Hallucination Detection Leaderboard
            </div>
            
            <div style="font-size: 1.5em; margin-top: 0.5em;">
                Evaluating factual accuracy and faithfulness of LLMs in both RAG and non-RAG settings with
                <a href="https://platform.kluster.ai/verify" target="_blank">
                    Verify
                </a> by
                <a href="https://kluster.ai/" target="_blank">
                    kluster.ai
                </a> which provides an API for detecting hallucinations with any model. 
            </div>
        </div>
        """)


    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Hallucination Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
            # ----------  Chart  ----------
            with gr.Row():
                with gr.Column():
                    gr.Plot(
                        make_leaderboard_plot(
                            LEADERBOARD_DF,
                            "RAG Hallucination Rate (%)",
                            "RAG Hallucination Rate (lower is better)",
                            bar_color="#4CAF50",
                        ),
                        show_label=False,
                    )
                    gr.Markdown("*HaluEval-QA benchmark (RAG): The model receives a question plus supporting context. We report the % of answers that introduce facts not found in that context β€” lower is better. See the **Methodology** section below for more information.*", elem_classes="plot-caption")
                with gr.Column():
                    gr.Plot(
                        make_leaderboard_plot(
                            LEADERBOARD_DF,
                            "Non-RAG Hallucination Rate (%)",
                            "Non-RAG Hallucination Rate (lower is better)",
                            bar_color="#FF7043",
                        ),
                        show_label=False,
                    )
                    gr.Markdown("*UltraChat benchmark (~11 k prompts, non-RAG): Evaluates open-domain answers when only the question is given. Score is the % of hallucinated responses β€” lower is better. See the **Methodology** section below for more information.*", elem_classes="plot-caption")

            # ----------  Leaderboard  ----------
            leaderboard = init_leaderboard(LEADERBOARD_DF)

            # ----------  Get Started with Verify  ----------
            verify_markdown = (Path(__file__).parent / "verify.md").read_text()

            gr.Markdown(verify_markdown, elem_classes="markdown-text")

            code_example_reliability = textwrap.dedent(
                r"""curl -X POST https://api.kluster.ai/v1/verify/reliability \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Tell me about the new iPhone 20 features",
    "output": "The iPhone 20 includes a revolutionary holographic display, 200MP camera with AI scene detection, and can project 3D holograms up to 6 feet away for video calls.",
    "context": null
  }'"""
            )

            gr.Code(code_example_reliability, language="shell")

            code_example_chat = textwrap.dedent(
                r"""curl -X POST https://api.kluster.ai/v1/chat/completions \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "klusterai/verify-reliability",
    "messages": [
      { "role": "user", "content": "What can you tell me about Milos Burger Joint?" },
      { "role": "assistant", "content": "Milos Burger Joint has been serving authentic Burgers cuisine since 1999 and just won 2 Michelin stars last week, making it the highest-rated burger restaurant in the city." }
    ]
  }'"""
            )

            gr.Code(code_example_chat, language="shell")

            with gr.Accordion("πŸ“„ Methodology & Benchmark Details", open=True):
                gr.Markdown((Path(__file__).parent / "docs.md").read_text(), elem_classes="markdown-text")

        
        with gr.TabItem("πŸ§ͺ RAG Techniques and Hallucinations", elem_id="llm-benchmark-tab-table", id=2):
            rag_intro_markdown = (Path(__file__).parent / "rag_techniques_intro.md").read_text()
            rag_details_markdown = (Path(__file__).parent / "rag_techniques_details.md").read_text()

            gr.Markdown(rag_intro_markdown, elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    gr.Plot(
                        make_rag_method_average_plot(
                            RAG_DF,
                            "Average Hallucination Rate by RAG Method (lower is better)",
                            bar_color="#4CAF50",
                        ),
                        show_label=False,
                    )
                    gr.Markdown(
                        "*Mean hallucination rate for each RAG prompting strategy across all models on the HaluEval-QA benchmark. Error bars represent Β±1 SD; lower is better.*",
                        elem_classes="plot-caption",
                    )
                with gr.Column():
                    gr.Plot(
                        make_rag_average_plot(
                            RAG_DF,
                            "Average Hallucination Rate (%)",
                            "Average Hallucination Rate per Model (lower is better)",
                            bar_color="#2196F3",
                        ),
                        show_label=False,
                    )
                    gr.Markdown(
                        "*Mean hallucination rate across the three RAG prompting settings for each individual model. Error bars show Β±1 SD across the three strategies; lower is better.*",
                        elem_classes="plot-caption",
                    )


            rag_leaderboard = Leaderboard(
                value=RAG_DF,
                datatype=["markdown", "number", "number", "number"],
                select_columns=SelectColumns(
                    default_selection=[
                        "Models",
                        "Context in System Prompt (%)",
                        "Context and Question Single-Turn (%)",
                        "Context and Question Two-Turns (%)",
                    ],
                    cant_deselect=["Models"],
                    label="Select RAG Method Columns:",
                ),
                search_columns=["Models"],
                bool_checkboxgroup_label=None,
                interactive=False,
                height=700 
            )

            with gr.Accordion("πŸ“„ RAG Techniques & Benchmark Details", open=True):
                gr.Markdown(rag_details_markdown, elem_classes="markdown-text")




        with gr.TabItem("πŸš€ Submit Here! ", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown((Path(__file__).parent / "submit.md").read_text(), elem_classes="markdown-text")

   
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(show_api=False)