import gradio as gr
import pandas as pd
from pathlib import Path
import plotly.express as px
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import textwrap
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_rag_leaderboard_df
from src.submission.submit import add_new_eval
import base64
def restart_space():
API.restart_space(repo_id=REPO_ID)
def make_rate_chart(df: pd.DataFrame):
"""Return a Plotly bar chart of hallucination rates."""
# long-form dataframe for grouped bars
df_long = df.melt(
id_vars="Models",
value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
var_name="Benchmark",
value_name="Rate",
)
fig = px.bar(
df_long,
x="Models",
y="Rate",
color="Benchmark",
barmode="group",
title="Hallucination Rates by Model",
height=400,
)
fig.update_layout(xaxis_title="", yaxis_title="%")
return fig
def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
df_sorted = df.sort_values(col, ascending=False)
fig = px.bar(
df_sorted,
x=col,
y="Models",
orientation="h",
title=title,
text_auto=".2f",
height=400,
color_discrete_sequence=[bar_color],
)
fig.update_traces(textposition="outside", cliponaxis=False)
fig.update_layout(
xaxis_title="Hallucination Rate (%)",
yaxis_title="",
yaxis=dict(dtick=1), # ensure every model shown
margin=dict(l=140, r=60, t=60, b=40)
)
fig.update_traces(textposition="outside")
return fig
def make_rag_average_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
rag_cols = [
"Context in System Prompt (%)",
"Context and Question Single-Turn (%)",
"Context and Question Two-Turns (%)",
]
df_plot = df.copy()
if col not in df_plot.columns:
df_plot[col] = df_plot[rag_cols].mean(axis=1, skipna=True).round(2)
df_plot["Std Dev"] = df_plot[rag_cols].std(axis=1, skipna=True).round(2)
df_sorted = df_plot.sort_values(col, ascending=False)
fig = px.bar(
df_sorted,
x=col,
y="Models",
orientation="h",
title=title,
height=400,
color_discrete_sequence=[bar_color],
error_x="Std Dev",
)
fig.update_traces(
texttemplate="%{x:.2f}",
textposition="inside",
insidetextanchor="middle",
cliponaxis=False,
)
fig.update_layout(
xaxis_title="Hallucination Rate (%)",
yaxis_title="",
yaxis=dict(dtick=1),
margin=dict(l=140, r=60, t=60, b=40),
)
return fig
def make_rag_method_average_plot(df: pd.DataFrame, title: str, bar_color: str):
method_cols = [
"Context in System Prompt (%)",
"Context and Question Single-Turn (%)",
"Context and Question Two-Turns (%)",
]
averages = df[method_cols].mean().round(2)
stds = df[method_cols].std().round(2)
avg_df = pd.DataFrame(
{
"RAG Method": averages.index,
"Average Hallucination Rate (%)": averages.values,
"Std Dev": stds.values,
}
)
fig = px.bar(
avg_df,
x="RAG Method",
y="Average Hallucination Rate (%)",
error_y="Std Dev",
title=title,
height=400,
color_discrete_sequence=[bar_color],
)
fig.update_traces(
texttemplate="%{y:.2f}" if 'orientation' not in fig.data[0] or fig.data[0].orientation == 'v' else "%{x:.2f}",
textposition="inside",
insidetextanchor="start",
cliponaxis=False,
textfont_color="white",
)
labels_map = {
"Context in System Prompt (%)": "Context in
System Prompt",
"Context and Question Single-Turn (%)": "Context & Question
Single-Turn",
"Context and Question Two-Turns (%)": "Context & Question
Two-Turns",
}
fig.update_xaxes(
tickmode="array",
tickvals=list(labels_map.keys()),
ticktext=list(labels_map.values()),
tickangle=0,
automargin=True,
)
fig.update_layout(
xaxis_title="",
yaxis_title="Hallucination Rate (%)",
margin=dict(l=40, r=100, t=60, b=120),
)
return fig
def color_scale(s, cmap):
"""
Return background-colour styles for a numeric Series (lower = greener,
higher = redder). Works with any palette length.
"""
colours = px.colors.sequential.__dict__[cmap]
n = len(colours) - 1 # max valid index
rng = s.max() - s.min()
norm = (s - s.min()) / (rng if rng else 1)
return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
# restart_space()
print(f"[WARN] Skipping RESULTS sync: {Exception}")
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
# restart_space()
print(f"[WARN] Skipping RESULTS sync: {Exception}")
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
RAG_DF = get_rag_leaderboard_df("leaderboard/data/rag_methods_compare.csv")
def init_leaderboard(df: pd.DataFrame):
if df is None or df.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=df,
datatype=["markdown", "markdown", "number", "number", "number"],
select_columns=SelectColumns(
default_selection=[
"Rank", "Models",
"Average Hallucination Rate (%)",
"RAG Hallucination Rate (%)",
"Non-RAG Hallucination Rate (%)"
],
cant_deselect=["Models", "Rank"],
label="Select Columns to Display:",
),
search_columns=["Models"],
# column_widths=["3%"],
bool_checkboxgroup_label=None,
interactive=False,
height=800
)
image_path = "static/kluster-color.png"
with open(image_path, "rb") as img_file:
b64_string = base64.b64encode(img_file.read()).decode("utf-8")
# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(f"""