import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results def get_leaderboard_df(results_path): df = pd.read_csv(results_path) # numeric formatting df["ha_rag_rate"] = df["ha_rag_rate"].round(2) df["ha_non_rag_rate"] = df["ha_non_rag_rate"].round(2) # --- map to pretty headers just before returning --- pretty = { "Models": "Models", "ha_rag_rate": "RAG Hallucination Rate (%)", "ha_non_rag_rate": "Non-RAG Hallucination Rate (%)", } df = df.rename(columns=pretty) # this is what the UI will use # ----------- Average column & ranking --------------------------------------------- df["Average Hallucination Rate (%)"] = df[ ["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"] ].mean(axis=1).round(2) # sort so *lower* average = better (true leaderboard style) df = df.sort_values("Average Hallucination Rate (%)", ascending=True).reset_index(drop=True) # # Rank & medal medal_map = {1: "🥇", 2: "🥈", 3: "🥉"} def medal_html(rank): """Return an HTML span with the medal icon for the top 3 ranks. The numeric rank is stored in the data-order attribute equal to the numerical rank so that DataTables (used under-the-hood by the gradio_leaderboard component) can sort the column by this hidden numeric value while still displaying the pretty medal icon. For ranks > 3 we just return the integer so the column remains fully numeric. """ medal = medal_map.get(rank) if medal: # Prepend a hidden numeric span so string sorting still works numerically. return ( f'{rank:04}' # zero-padded for stable string sort f'{medal}' ) # For other ranks, also zero-pad to keep width and ensure proper string sort return f'{rank:04}{rank}' df["Rank"] = df.index + 1 df["Rank"] = df["Rank"].apply(medal_html) # ----------- column ordering ------------------------------------------------------ df = df[[ "Rank", # pretty column user sees "Models", "Average Hallucination Rate (%)", "RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)", ]] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]