kokluch's picture
Search for past scan before requesting new one.
d316383
raw
history blame
4.15 kB
import httpx
from fastapi import FastAPI
from fastapi.responses import JSONResponse, FileResponse
from pydantic import BaseModel
from enum import Enum
from transformers import pipeline
from phishing_datasets import submit_entry
from url_tools import extract_urls, resolve_short_url, extract_domain_from_url
from urlscan_client import UrlscanClient
import requests
app = FastAPI()
urlscan = UrlscanClient()
class MessageModel(BaseModel):
text: str
class QueryModel(BaseModel):
sender: str
message: MessageModel
class AppModel(BaseModel):
version: str
class InputModel(BaseModel):
_version: int
query: QueryModel
app: AppModel
class ActionModel(Enum):
# Insufficient information to determine an action to take. In a query response, has the effect of allowing the message to be shown normally.
NONE = 0
# Allow the message to be shown normally.
ALLOW = 1
# Prevent the message from being shown normally, filtered as Junk message.
JUNK = 2
# Prevent the message from being shown normally, filtered as Promotional message.
PROMOTION = 3
# Prevent the message from being shown normally, filtered as Transactional message.
TRANSACTION = 4
class SubActionModel(Enum):
NONE = 0
class OutputModel(BaseModel):
action: ActionModel
sub_action: SubActionModel
pipe = pipeline(task="text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")
@app.get("/.well-known/apple-app-site-association", include_in_schema=False)
def get_well_known_aasa():
return JSONResponse(
content={
"messagefilter": {
"apps": [
"X9NN3FSS3T.com.lela.Serenity.SerenityMessageFilterExtension",
"X9NN3FSS3T.com.lela.Serenity"
]
}
},
media_type="application/json"
)
@app.get("/robot.txt", include_in_schema=False)
def get_robot_txt():
return FileResponse("robot.txt")
@app.post("/predict")
def predict(model: InputModel) -> OutputModel:
text = model.query.message.text
print(f"Predict: {text}")
urls = extract_urls(text)
if urls:
print("Searching for past scans")
search_results = [urlscan.search(f"domain:{extract_domain_from_url(url)}") for url in urls]
scan_results = []
for search_result in search_results:
results = search_result.get('results', [])
for result in results:
result_uuid = result.get('_id', str)
scan_result = urlscan.get_result(result_uuid)
scan_results.append(scan_result)
if not scan_results:
print("Scanning...")
scan_results = [urlscan.scan(url) for url in urls]
for result in scan_results:
overall = result.get('verdicts', {}).get('overall', {})
print(f"Checking overall verdict: {overall}")
if overall.get('hasVerdicts'):
score = overall.get('score')
print(f"Has verdicts score {score}")
if 0 < overall.get('score'):
print("Submitting entry and returning JUNK.")
submit_entry(model.query.sender, model.query.message.text)
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
# elif overall.get('score') < 0:
# print("Returning ALLOW.")
# return OutputModel(action=ActionModel.ALLOW, sub_action=SubActionModel.NONE)
label = pipe(text)
if label[0]['label'] == 'LABEL_1':
print("Classify LABEL_1. Submitting entry and returning JUNK.")
submit_entry(model.query.sender, model.query.message.text)
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
else:
print("Classify LABEL_0. Submitting entry and returning NONE.")
return OutputModel(action=ActionModel.NONE, sub_action=SubActionModel.NONE)
class ReportModel(BaseModel):
sender: str
message: str
@app.post("/report")
def report(model: ReportModel):
submit_entry(model.sender, model.message)