Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fix file handling
Browse files
app.py
CHANGED
|
@@ -1,109 +1,87 @@
|
|
| 1 |
-
# created with great guidance from https://github.com/NimaBoscarino
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
-
|
| 5 |
import kornia as K
|
| 6 |
from kornia.core import Tensor
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
# Define Functions
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
x_out: Tensor = K.filters.box_blur(img, (int(box_blur), int(box_blur)))
|
| 16 |
-
|
| 17 |
-
return K.utils.tensor_to_image(x_out)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def blur_pool2d_fn(file, blur_pool2d):
|
| 21 |
-
# load the image using the rust backend
|
| 22 |
-
img: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32)
|
| 23 |
-
img = img[None] # 1xCxHxW / fp32 / [0, 1]
|
| 24 |
|
|
|
|
|
|
|
| 25 |
x_out: Tensor = K.filters.blur_pool2d(img, int(blur_pool2d))
|
| 26 |
-
|
| 27 |
-
return K.utils.tensor_to_image(x_out)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def gaussian_blur_fn(file, gaussian_blur2d):
|
| 31 |
-
# load the image using the rust backend
|
| 32 |
-
img: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32)
|
| 33 |
-
img = img[None] # 1xCxHxW / fp32 / [0, 1]
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
(int(gaussian_blur2d), int(gaussian_blur2d)),
|
| 37 |
-
(float(gaussian_blur2d), float(gaussian_blur2d)))
|
| 38 |
-
|
| 39 |
-
return K.utils.tensor_to_image(x_out)
|
| 40 |
-
|
| 41 |
|
| 42 |
def max_blur_pool2d_fn(file, max_blur_pool2d):
|
| 43 |
-
|
| 44 |
-
img: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32)
|
| 45 |
-
img = img[None] # 1xCxHxW / fp32 / [0, 1]
|
| 46 |
-
|
| 47 |
x_out: Tensor = K.filters.max_blur_pool2d(img, int(max_blur_pool2d))
|
| 48 |
-
|
| 49 |
-
return K.utils.tensor_to_image(x_out)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def median_blur_fn(file, median_blur):
|
| 53 |
-
# load the image using the rust backend
|
| 54 |
-
img: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32)
|
| 55 |
-
img = img[None] # 1xCxHxW / fp32 / [0, 1]
|
| 56 |
|
|
|
|
|
|
|
| 57 |
x_out: Tensor = K.filters.median_blur(img, (int(median_blur), int(median_blur)))
|
| 58 |
-
|
| 59 |
-
return K.utils.tensor_to_image(x_out)
|
| 60 |
-
|
| 61 |
|
| 62 |
# Define Examples
|
| 63 |
examples = [
|
| 64 |
-
["examples/monkey.jpg", 1
|
| 65 |
-
["examples/pikachu.jpg", 1
|
| 66 |
]
|
| 67 |
|
| 68 |
-
|
| 69 |
# Define Demos
|
| 70 |
box_blur_demo = gr.Interface(
|
| 71 |
box_blur_fn,
|
| 72 |
[
|
| 73 |
-
gr.Image(type="
|
| 74 |
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Box Blur")
|
| 75 |
],
|
| 76 |
"image",
|
| 77 |
examples=examples,
|
| 78 |
)
|
| 79 |
|
| 80 |
-
|
| 81 |
blur_pool2d_demo = gr.Interface(
|
| 82 |
blur_pool2d_fn,
|
| 83 |
[
|
| 84 |
-
gr.Image(type="
|
| 85 |
gr.Slider(minimum=1, maximum=40, step=1, value=20, label="Blur Pool")
|
| 86 |
],
|
| 87 |
"image",
|
| 88 |
examples=examples,
|
| 89 |
)
|
| 90 |
|
| 91 |
-
|
| 92 |
gaussian_blur_demo = gr.Interface(
|
| 93 |
gaussian_blur_fn,
|
| 94 |
[
|
| 95 |
-
gr.Image(type="
|
| 96 |
gr.Slider(minimum=1, maximum=30, step=2, value=15, label="Gaussian Blur")
|
| 97 |
],
|
| 98 |
"image",
|
| 99 |
examples=examples,
|
| 100 |
)
|
| 101 |
|
| 102 |
-
|
| 103 |
max_blur_pool2d_demo = gr.Interface(
|
| 104 |
max_blur_pool2d_fn,
|
| 105 |
[
|
| 106 |
-
gr.Image(type="
|
| 107 |
gr.Slider(minimum=1, maximum=40, step=1, value=20, label="Max Pool")
|
| 108 |
],
|
| 109 |
"image",
|
|
@@ -113,29 +91,28 @@ max_blur_pool2d_demo = gr.Interface(
|
|
| 113 |
median_blur_demo = gr.Interface(
|
| 114 |
median_blur_fn,
|
| 115 |
[
|
| 116 |
-
gr.Image(type="
|
| 117 |
gr.Slider(minimum=1, maximum=30, step=2, value=15, label="Median Blur")
|
| 118 |
],
|
| 119 |
"image",
|
| 120 |
examples=examples,
|
| 121 |
)
|
| 122 |
|
| 123 |
-
|
| 124 |
# Create Interface
|
| 125 |
demo = gr.TabbedInterface(
|
| 126 |
[
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
],
|
| 133 |
[
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
]
|
| 140 |
)
|
| 141 |
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import kornia as K
|
| 3 |
from kornia.core import Tensor
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
|
| 7 |
# Define Functions
|
| 8 |
+
def process_image(file):
|
| 9 |
+
if isinstance(file, np.ndarray):
|
| 10 |
+
# If the input is already a numpy array, convert it to a tensor
|
| 11 |
+
img = K.image_to_tensor(file).float() / 255.0
|
| 12 |
+
else:
|
| 13 |
+
# If it's a file path, load it using kornia
|
| 14 |
+
img = K.io.load_image(file, K.io.ImageLoadType.RGB32)
|
| 15 |
+
return img.unsqueeze(0) # Add batch dimension: 1xCxHxW
|
| 16 |
+
|
| 17 |
+
def box_blur_fn(file, box_blur):
|
| 18 |
+
img = process_image(file)
|
| 19 |
x_out: Tensor = K.filters.box_blur(img, (int(box_blur), int(box_blur)))
|
| 20 |
+
return K.utils.tensor_to_image(x_out.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
def blur_pool2d_fn(file, blur_pool2d):
|
| 23 |
+
img = process_image(file)
|
| 24 |
x_out: Tensor = K.filters.blur_pool2d(img, int(blur_pool2d))
|
| 25 |
+
return K.utils.tensor_to_image(x_out.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
def gaussian_blur_fn(file, gaussian_blur2d):
|
| 28 |
+
img = process_image(file)
|
| 29 |
+
x_out: Tensor = K.filters.gaussian_blur2d(img,
|
| 30 |
(int(gaussian_blur2d), int(gaussian_blur2d)),
|
| 31 |
+
(float(gaussian_blur2d)/2, float(gaussian_blur2d)/2))
|
| 32 |
+
return K.utils.tensor_to_image(x_out.squeeze())
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def max_blur_pool2d_fn(file, max_blur_pool2d):
|
| 35 |
+
img = process_image(file)
|
|
|
|
|
|
|
|
|
|
| 36 |
x_out: Tensor = K.filters.max_blur_pool2d(img, int(max_blur_pool2d))
|
| 37 |
+
return K.utils.tensor_to_image(x_out.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
def median_blur_fn(file, median_blur):
|
| 40 |
+
img = process_image(file)
|
| 41 |
x_out: Tensor = K.filters.median_blur(img, (int(median_blur), int(median_blur)))
|
| 42 |
+
return K.utils.tensor_to_image(x_out.squeeze())
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# Define Examples
|
| 45 |
examples = [
|
| 46 |
+
["examples/monkey.jpg", 1],
|
| 47 |
+
["examples/pikachu.jpg", 1]
|
| 48 |
]
|
| 49 |
|
|
|
|
| 50 |
# Define Demos
|
| 51 |
box_blur_demo = gr.Interface(
|
| 52 |
box_blur_fn,
|
| 53 |
[
|
| 54 |
+
gr.Image(type="numpy"),
|
| 55 |
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Box Blur")
|
| 56 |
],
|
| 57 |
"image",
|
| 58 |
examples=examples,
|
| 59 |
)
|
| 60 |
|
|
|
|
| 61 |
blur_pool2d_demo = gr.Interface(
|
| 62 |
blur_pool2d_fn,
|
| 63 |
[
|
| 64 |
+
gr.Image(type="numpy"),
|
| 65 |
gr.Slider(minimum=1, maximum=40, step=1, value=20, label="Blur Pool")
|
| 66 |
],
|
| 67 |
"image",
|
| 68 |
examples=examples,
|
| 69 |
)
|
| 70 |
|
|
|
|
| 71 |
gaussian_blur_demo = gr.Interface(
|
| 72 |
gaussian_blur_fn,
|
| 73 |
[
|
| 74 |
+
gr.Image(type="numpy"),
|
| 75 |
gr.Slider(minimum=1, maximum=30, step=2, value=15, label="Gaussian Blur")
|
| 76 |
],
|
| 77 |
"image",
|
| 78 |
examples=examples,
|
| 79 |
)
|
| 80 |
|
|
|
|
| 81 |
max_blur_pool2d_demo = gr.Interface(
|
| 82 |
max_blur_pool2d_fn,
|
| 83 |
[
|
| 84 |
+
gr.Image(type="numpy"),
|
| 85 |
gr.Slider(minimum=1, maximum=40, step=1, value=20, label="Max Pool")
|
| 86 |
],
|
| 87 |
"image",
|
|
|
|
| 91 |
median_blur_demo = gr.Interface(
|
| 92 |
median_blur_fn,
|
| 93 |
[
|
| 94 |
+
gr.Image(type="numpy"),
|
| 95 |
gr.Slider(minimum=1, maximum=30, step=2, value=15, label="Median Blur")
|
| 96 |
],
|
| 97 |
"image",
|
| 98 |
examples=examples,
|
| 99 |
)
|
| 100 |
|
|
|
|
| 101 |
# Create Interface
|
| 102 |
demo = gr.TabbedInterface(
|
| 103 |
[
|
| 104 |
+
box_blur_demo,
|
| 105 |
+
blur_pool2d_demo,
|
| 106 |
+
gaussian_blur_demo,
|
| 107 |
+
max_blur_pool2d_demo,
|
| 108 |
+
median_blur_demo
|
| 109 |
+
],
|
| 110 |
[
|
| 111 |
+
"Box Blur",
|
| 112 |
+
"Blur Pool",
|
| 113 |
+
"Gaussian Blur",
|
| 114 |
+
"Max Pool",
|
| 115 |
+
"Median Blur"
|
| 116 |
]
|
| 117 |
)
|
| 118 |
|