kotlarmilos's picture
Upload app.py
9cbcd4d verified
import gradio as gr
from huggingface_hub import InferenceClient
#!/usr/bin/env python3
# import gradio as gr
import json
import logging
import os
import traceback
from pathlib import Path
from urllib.parse import urlparse
from typing import Dict, Any, List, Set
from git import Repo
import io
import torch
import numpy as np
import faiss
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, util
from huggingface_hub import snapshot_download
import os
from openai import AzureOpenAI
import requests
import re
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import plotly.express as px
import random
from sklearn.cluster import AgglomerativeClustering
def load_env():
from dotenv import load_dotenv
env_path = Path(__file__).parent.parent / '.env'
load_dotenv(dotenv_path=env_path)
load_env()
# Centralized env parameters
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
MODEL_NAME = "gpt-4o-mini"
DEPLOYMENT = "gpt-4o-mini"
API_VERSION = "2024-12-01-preview"
FILE_REGEX = re.compile(r"^diff --git a/(.+?) b/(.+)")
LINE_HUNK = re.compile(r"@@ -(?P<old_start>\d+),(?P<old_len>\d+) \+(?P<new_start>\d+),(?P<new_len>\d+) @@")
# Configure logging to capture all output
log_stream = io.StringIO()
log_handler = logging.StreamHandler(log_stream)
log_handler.setLevel(logging.INFO)
log_formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")
log_handler.setFormatter(log_formatter)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)s %(message)s",
handlers=[log_handler, logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
class InferenceContext:
def __init__(self, repo_url: str):
self.repo_url = repo_url
owner, name = self._parse_owner_repo(repo_url)
self.repo_id = f"{owner}/{name}"
self.repo_dir = f"{owner}-{name}"
self.hf_repo_id = "kotlarmilos/repository-learning"
# Local paths for downloaded models
self.base = Path("artifacts") / self.repo_dir
self.model_dirs = {
'fine_tune': self.base / 'fine_tune',
'contrastive': self.base / 'contrastive',
'index': self.base / 'index'
}
self.code_dir = self.base / 'code'
# Create directories
for d in (*self.model_dirs.values(), self.code_dir):
d.mkdir(parents=True, exist_ok=True)
@staticmethod
def _parse_owner_repo(url: str) -> tuple[str, str]:
parts = urlparse(url).path.strip("/").split("/")
if len(parts) < 2:
raise ValueError(f"Invalid GitHub URL: {url}")
return parts[-2], parts[-1]
class InferencePipeline:
def __init__(self, ctx: InferenceContext):
self.ctx = ctx
self.tokenizer = None
self.llm = None
self.embedder = None
self.faiss_index = None
self.faiss_metadata = None
self.download_artifacts()
self.load_models()
def download_artifacts(self):
"""Download models and index from Hugging Face if they don't exist locally."""
self.repo_files = self._clone_or_pull()
snapshot_download(
repo_id=self.ctx.hf_repo_id,
allow_patterns=f"{self.ctx.repo_dir}/**",
local_dir=str(self.ctx.base.parent),
local_dir_use_symlinks=False,
token=HUGGINGFACE_HUB_TOKEN
)
logger.info("All artifacts download complete.")
def _clone_or_pull(self) -> bool:
dest = self.ctx.code_dir
git_dir = dest / ".git"
if git_dir.exists():
Repo(dest).remotes.origin.pull()
logger.info("Pulled latest code into %s", dest)
else:
Repo.clone_from(self.ctx.repo_url, dest)
logger.info("Cloned repo %s into %s", self.ctx.repo_url, dest)
return [str(f.relative_to(dest)) for f in dest.rglob("*") if f.is_file()]
def load_models(self):
"""Load the fine-tuned LLM model."""
self.tokenizer = AutoTokenizer.from_pretrained(self.ctx.model_dirs['fine_tune'])
self.local_llm = AutoModelForCausalLM.from_pretrained(
self.ctx.model_dirs['fine_tune'],
device_map="auto",
torch_dtype=torch.bfloat16
)
self.enterprise_llm = AzureOpenAI(
api_version=API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
api_key=AZURE_OPENAI_API_KEY,
)
self.embedder = SentenceTransformer(str(self.ctx.model_dirs['contrastive']))
self.faiss_index = faiss.read_index(str(self.ctx.model_dirs['index'] / "index.faiss"))
self.faiss_metadata = json.loads((self.ctx.model_dirs['index'] / "metadata.json").read_text())
logger.info("FAISS index loaded successfully")
def _extract_pr_data(self, pr_url: str) -> dict:
"""
Collect PR data using GitHub API.
"""
match = re.search(r'/pull/(\d+)', pr_url)
pr_number = int(match.group(1))
pr_url = f"https://api.github.com/repos/{self.ctx.repo_id}/pulls/{pr_number}"
comments_url = f"https://api.github.com/repos/{self.ctx.repo_id}/pulls/{pr_number}/comments"
headers = {}
headers["Authorization"] = f"token {GITHUB_TOKEN}"
headers["Accept"] = "application/vnd.github.v3+json"
try:
logger.info(f"Fetching PR #{pr_number} details...")
pr_response = requests.get(pr_url, headers=headers)
pr_response.raise_for_status()
pr_data = pr_response.json()
logger.info(f"Fetching PR #{pr_number} review comments...")
comments_response = requests.get(comments_url, headers=headers)
comments_response.raise_for_status()
comments_data = comments_response.json()
grouped = {}
for comment in comments_data:
hunk = comment.get("diff_hunk", "")
grouped.setdefault(hunk, []).append(comment.get("body", ""))
review_comments = [
{"diff_hunk": hunk, "comments": comments}
for hunk, comments in grouped.items()
]
logger.info(f"Fetching PR #{pr_number} diff...")
diff_headers = headers.copy()
diff_headers["Accept"] = "application/vnd.github.v3.diff"
diff_response = requests.get(pr_url, headers=diff_headers)
diff_response.raise_for_status()
parsed_diff = self.parse_diff_with_lines(diff_response.text)
result = {
"title": pr_data.get("title", ""),
"body": pr_data.get("body", ""),
"review_comments": review_comments,
"diff": diff_response.text,
"changed_files": list(parsed_diff['changed_files']),
"diff_hunks": parsed_diff['diff_hunks']
}
logger.info(f"Successfully collected PR #{pr_number} data")
return result
except Exception as e:
logger.error(f"Error processing PR #{pr_number} data: {e}")
raise
def parse_diff_with_lines(self, diff_text: str) -> Dict[str, Any]:
lines = diff_text.splitlines()
result = {
'changed_files': set(),
'diff_hunks': {}
}
current_file = None
current_hunk_content = []
current_line_range = None
file_header_lines = []
for line in lines:
# Check if this is a new file header
file_match = FILE_REGEX.match(line)
if file_match:
# Save previous file data if exists
if current_file and current_hunk_content and current_line_range:
if current_file not in result['diff_hunks']:
result['diff_hunks'][current_file] = []
result['diff_hunks'][current_file].append({
'line_range': current_line_range,
'content': '\n'.join(current_hunk_content)
})
# Start new file
current_file = file_match.group(2) # Use the 'b/' file path (new file)
result['changed_files'].add(current_file)
file_header_lines = [line]
current_hunk_content = []
current_line_range = None
elif current_file: # Only process if we're inside a file
# Check for hunk headers to extract line ranges
hunk_match = LINE_HUNK.match(line)
if hunk_match:
# Save previous hunk if exists
if current_hunk_content and current_line_range:
if current_file not in result['diff_hunks']:
result['diff_hunks'][current_file] = []
result['diff_hunks'][current_file].append({
'line_range': current_line_range,
'content': '\n'.join(current_hunk_content)
})
# Start new hunk
old_start = int(hunk_match.group('old_start'))
old_len = int(hunk_match.group('old_len'))
new_start = int(hunk_match.group('new_start'))
new_len = int(hunk_match.group('new_len'))
# Calculate the range of changed lines
if new_len > 0:
line_start = new_start
line_end = new_start + new_len - 1
current_line_range = (line_start, line_end)
else:
current_line_range = (new_start, new_start)
# Start fresh hunk content with file headers and current hunk header
current_hunk_content = file_header_lines + [line]
else:
# Add content line to current hunk
if current_hunk_content is not None:
current_hunk_content.append(line)
# Save the last hunk data
if current_file and current_hunk_content and current_line_range:
if current_file not in result['diff_hunks']:
result['diff_hunks'][current_file] = []
result['diff_hunks'][current_file].append({
'line_range': current_line_range,
'content': '\n'.join(current_hunk_content)
})
return result
def analyze_file_similarity(self, changed_files: List[str]) -> Dict[str, Any]:
result = {
'similar_file_groups': [],
'anomalous_files': [],
'analysis_summary': {
'total_files': len(changed_files),
'num_groups': 0,
'num_anomalies': 0,
'avg_group_size': 0
}
}
# Handle edge cases
if len(changed_files) == 0:
logger.info("No changed files to analyze")
return result
if len(changed_files) == 1:
logger.info(f"Only one file changed: {changed_files[0]} - no similarity analysis needed")
result['analysis_summary']['num_anomalies'] = 1
result['anomalous_files'].append({
'file': changed_files[0],
'reason': 'single_file',
'max_similarity_to_others': 0.0,
'most_similar_file': None,
'is_anomaly': False
})
return result
# Encode all changed files
file_embeddings = self.embedder.encode(changed_files, convert_to_tensor=True)
similarity_matrix = util.pytorch_cos_sim(file_embeddings, file_embeddings)
# Convert similarity matrix to distance matrix for clustering
distance_matrix = 1 - similarity_matrix.cpu().numpy()
# Perform hierarchical clustering
clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=0.3, # 1 - 0.7 = 0.3 (similarity threshold of 0.7)
metric='precomputed',
linkage='average'
)
cluster_labels = clustering.fit_predict(distance_matrix)
# Group files by cluster
clusters = {}
for i, label in enumerate(cluster_labels):
if label not in clusters:
clusters[label] = []
clusters[label].append((changed_files[i], i)) # Store file and its index
# Process clusters to identify groups and anomalies
for cluster_id, files_with_indices in clusters.items():
files_in_cluster = [f[0] for f in files_with_indices]
if len(files_in_cluster) > 1:
# This is a group of similar files
group_similarities = []
pairwise_similarities = []
for i in range(len(files_with_indices)):
for j in range(i+1, len(files_with_indices)):
file_i_idx = files_with_indices[i][1]
file_j_idx = files_with_indices[j][1]
similarity = float(similarity_matrix[file_i_idx][file_j_idx])
group_similarities.append(similarity)
pairwise_similarities.append({
'file1': files_with_indices[i][0],
'file2': files_with_indices[j][0],
'similarity': similarity
})
avg_similarity = sum(group_similarities) / len(group_similarities) if group_similarities else 0
min_similarity = min(group_similarities) if group_similarities else 0
max_similarity = max(group_similarities) if group_similarities else 0
result['similar_file_groups'].append({
'cluster_id': cluster_id,
'files': files_in_cluster,
'avg_similarity': avg_similarity,
'min_similarity': min_similarity,
'max_similarity': max_similarity,
'pairwise_similarities': pairwise_similarities,
'coherence': 'high' if min_similarity > 0.6 else 'medium' if min_similarity > 0.4 else 'low'
})
else:
# This is a singleton cluster - potentially anomalous
file = files_in_cluster[0]
file_idx = files_with_indices[0][1]
# Calculate maximum similarity to any other file
max_similarity = 0
most_similar_file = None
similarities_to_others = []
for other_idx, other_file in enumerate(changed_files):
if other_idx != file_idx:
similarity = float(similarity_matrix[file_idx][other_idx])
similarities_to_others.append({
'file': other_file,
'similarity': similarity
})
if similarity > max_similarity:
max_similarity = similarity
most_similar_file = other_file
result['anomalous_files'].append({
'file': file,
'cluster_id': cluster_id,
'max_similarity_to_others': max_similarity,
'most_similar_file': most_similar_file,
'similarities_to_others': similarities_to_others,
'is_anomaly': max_similarity < 0.5, # Strong anomaly threshold
'anomaly_strength': 'strong' if max_similarity < 0.3 else 'medium' if max_similarity < 0.5 else 'weak',
'reason': 'isolated_cluster'
})
# Additional anomaly detection: files that are far from the group average
if len(changed_files) >= 3:
# Calculate average embedding of all changed files
avg_embedding = torch.mean(file_embeddings, dim=0)
# Find files that are far from the average
for i, file in enumerate(changed_files):
file_embedding = file_embeddings[i]
similarity_to_avg = float(util.pytorch_cos_sim(file_embedding.unsqueeze(0), avg_embedding.unsqueeze(0))[0][0])
# Check if this file is already in anomalous_files
existing_anomaly = next((a for a in result['anomalous_files'] if a['file'] == file), None)
if existing_anomaly:
# Update existing anomaly record
existing_anomaly['similarity_to_group_avg'] = similarity_to_avg
existing_anomaly['is_strong_anomaly'] = (
similarity_to_avg < 0.4 and existing_anomaly['max_similarity_to_others'] < 0.5
)
if existing_anomaly['is_strong_anomaly']:
existing_anomaly['anomaly_strength'] = 'very_strong'
elif similarity_to_avg < 0.4: # Low similarity to group average
# Calculate similarities to all other files
similarities_to_others = []
max_sim = 0
most_sim_file = None
for j, other_file in enumerate(changed_files):
if i != j:
sim = float(similarity_matrix[i][j])
similarities_to_others.append({
'file': other_file,
'similarity': sim
})
if sim > max_sim:
max_sim = sim
most_sim_file = other_file
result['anomalous_files'].append({
'file': file,
'cluster_id': None,
'max_similarity_to_others': max_sim,
'most_similar_file': most_sim_file,
'similarities_to_others': similarities_to_others,
'similarity_to_group_avg': similarity_to_avg,
'is_anomaly': True,
'is_strong_anomaly': max_sim < 0.5,
'anomaly_strength': 'very_strong' if max_sim < 0.3 else 'strong' if max_sim < 0.5 else 'medium',
'reason': 'distant_from_group_average'
})
# Update analysis summary
result['analysis_summary']['num_groups'] = len(result['similar_file_groups'])
result['analysis_summary']['num_anomalies'] = len(result['anomalous_files'])
if result['similar_file_groups']:
total_files_in_groups = sum(len(group['files']) for group in result['similar_file_groups'])
result['analysis_summary']['avg_group_size'] = total_files_in_groups / len(result['similar_file_groups'])
# Log results
logger.info(f"File similarity analysis complete:")
logger.info(f" Total files: {result['analysis_summary']['total_files']}")
logger.info(f" Similar groups: {result['analysis_summary']['num_groups']}")
logger.info(f" Anomalous files: {result['analysis_summary']['num_anomalies']}")
for i, group in enumerate(result['similar_file_groups']):
logger.info(f" Group {i+1} ({group['coherence']} coherence): {group['files']} (avg: {group['avg_similarity']:.3f})")
for anomaly in result['anomalous_files']:
logger.info(f" {anomaly['anomaly_strength'].upper()} ANOMALY: {anomaly['file']} (reason: {anomaly['reason']}, max_sim: {anomaly['max_similarity_to_others']:.3f})")
return result
# TODO: Add local LLM reasoning
# def generate_llm_response(self, prompt: str, max_new_tokens: int = 256) -> str:
# """Generate response using the fine-tuned LLM."""
# if not self.tokenizer or not self.local_llm:
# raise ValueError("LLM not loaded. Call load_llm() first.")
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.local_llm.device)
# outputs = self.local_llm.generate(
# **inputs,
# max_new_tokens=max_new_tokens,
# pad_token_id=self.tokenizer.eos_token_id
# )
# return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def search_code_snippets(self, diff_hunks) -> list:
metadata_file = self.ctx.model_dirs["index"] / "metadata.json"
with open(metadata_file, 'r', encoding='utf-8') as f:
metadata = json.load(f)
result = []
# Process each file's diff hunks
for file_path, hunks in diff_hunks.items():
logger.info(f"Searching functions for file: {file_path}")
for hunk in hunks:
line_range = hunk.get('line_range')
if not line_range:
continue
start_line, end_line = line_range
logger.debug(f"Processing hunk at lines {start_line}-{end_line}")
# Find functions that overlap with this line range
overlapping_functions = []
for func_metadata in metadata:
func_file = func_metadata.get('file', '')
func_start = func_metadata.get('start_line')
func_end = func_metadata.get('end_line')
func_name = func_metadata.get('name', 'unknown')
func_description = func_metadata.get('llm_description', '')
# Check if this function is in the same file
if func_file != file_path:
continue
# Check if function line range overlaps with diff hunk line range
if func_start is not None and func_end is not None:
# Check for overlap: function overlaps if it starts before diff ends
# and ends after diff starts
if func_start <= end_line and func_end >= start_line:
overlap_start = max(func_start, start_line)
overlap_end = min(func_end, end_line)
overlapping_functions.append({
'function_name': func_name,
'function_description': func_description,
'function_start_line': func_start,
'function_end_line': func_end,
# 'overlap_start': overlap_start,
# 'overlap_end': overlap_end,
# 'overlap_lines': overlap_end - overlap_start + 1
})
# if len(overlapping_functions) > 0:
hunk_result = {
'file_name': file_path,
'diff_hunk': hunk.get('content', ''),
'overlapping_functions': overlapping_functions
}
result.append(hunk_result)
total_hunks = sum(len(hunks) for hunks in diff_hunks.values())
total_functions = sum(len(entry['overlapping_functions']) for entry in result)
logger.info(f"Processed {total_hunks} diff hunks across {len(diff_hunks)} files, found {total_functions} overlapping functions")
return result
def _select_files_around_changed(self, changed_files: List[str] = None, max_files: int = 500) -> List[str]:
"""Select files to visualize, prioritizing changed files and semantically similar ones."""
logger.info(f"Selecting {max_files} files around {len(changed_files)} changed files...")
# Start with changed files
selected_files = set(changed_files)
# Find files similar to changed files using embeddings
try:
# Encode changed files
changed_embeddings = self.embedder.encode(changed_files, convert_to_tensor=False)
# Calculate target number of similar files to find
target_similar = min(max_files - len(changed_files), 200) # Leave room for random files
# Get a sample of repo files to compare against (for performance)
sample_size = min(2000, len(self.repo_files))
repo_sample = self.repo_files[:sample_size]
# Remove already selected files from sample
repo_sample = [f for f in repo_sample if f not in selected_files]
if len(repo_sample) > 0:
# Encode sample files
sample_embeddings = self.embedder.encode(repo_sample, convert_to_tensor=False, show_progress_bar=False)
# Calculate similarities
similarities = []
for i, repo_file in enumerate(repo_sample):
# Calculate max similarity to any changed file
max_sim = 0
for changed_emb in changed_embeddings:
sim = np.dot(changed_emb, sample_embeddings[i]) / (
np.linalg.norm(changed_emb) * np.linalg.norm(sample_embeddings[i])
)
max_sim = max(max_sim, sim)
# Only add if not already selected (avoid duplicates)
similarities.append((repo_file, max_sim))
# Sort by similarity and take top ones, avoiding duplicates
added = 0
for file_path, sim in sorted(similarities, key=lambda x: x[1], reverse=True):
if file_path not in selected_files:
selected_files.add(file_path)
added += 1
if len(selected_files) >= max_files or added >= target_similar:
break
logger.info(f"Added {len(similarities[:target_similar])} similar files to visualization")
except Exception as e:
logger.warning(f"Could not compute file similarities: {e}")
# Fill remaining slots with random files
remaining_slots = max_files - len(selected_files)
if remaining_slots > 0:
remaining_files = [f for f in self.repo_files if f not in selected_files]
random.shuffle(remaining_files)
for file_path in remaining_files[:remaining_slots]:
selected_files.add(file_path)
result = list(selected_files)
logger.info(f"Selected {len(result)} files total: {len(changed_files)} changed, {len(result) - len(changed_files)} related/random")
return result
def create_repo_visualization(self, changed_files: List[str] = None, max_files: int = 500):
files_to_plot = self._select_files_around_changed(changed_files, max_files * len(changed_files))
logger.info(f"Creating visualization for {len(files_to_plot)} files...")
if len(files_to_plot) < 2:
return self._create_dummy_plot(f"Only {len(files_to_plot)} files available")
embeddings = self.embedder.encode(files_to_plot, convert_to_tensor=False, show_progress_bar=False)
logger.info(f"Embeddings computed successfully: shape {getattr(embeddings, 'shape', None)}")
n = len(files_to_plot)
perplexity = min(30, max(1, n - 1))
tsne = TSNE(n_components=3, perplexity=perplexity, init='random', random_state=42)
reduced = tsne.fit_transform(embeddings)
fig = go.Figure()
colors = []
sizes = []
hover_texts = []
for i, file_path in enumerate(files_to_plot):
if changed_files and file_path in changed_files:
colors.append('red')
else:
# Color by file type
ext = os.path.splitext(file_path)[1].lower()
if ext in ['.py', '.js', '.ts', '.java', '.cpp', '.c', '.cs', '.rb', '.go', '.rs']:
colors.append('blue')
elif ext in ['.md', '.txt', '.rst', '.doc']:
colors.append('green')
elif ext in ['.json', '.yaml', '.yml', '.xml', '.toml', '.ini']:
colors.append('orange')
elif ext in ['.html', '.css', '.scss', '.sass']:
colors.append('purple')
else:
colors.append('gray')
sizes.append(8)
hover_texts.append(f"{os.path.basename(file_path)}")
fig.add_trace(go.Scatter3d(
x=reduced[:, 0].tolist(),
y=reduced[:, 1].tolist(),
z=reduced[:, 2].tolist(),
mode='markers+text',
marker=dict(size=sizes, color=colors),
text=[os.path.basename(f) for f in files_to_plot],
hovertext=hover_texts,
textposition='middle center',
name='Repository Files'
))
title_text = 'Repository File Embeddings (3D t-SNE)'
if changed_files:
title_text += f' - {len(changed_files)} Changed Files Highlighted in Red'
fig.update_layout(
title=title_text,
scene=dict(
xaxis_title='t-SNE 1',
yaxis_title='t-SNE 2',
zaxis_title='t-SNE 3',
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
width=800,
height=600,
margin=dict(r=20, b=10, l=10, t=60)
)
return fig
def build_structured_prompt(self, data: dict, sim_analysis: dict, code_desc: list) -> str:
# Group clusters
clusters = sim_analysis['similar_file_groups']
anomalies = sim_analysis['anomalous_files']
# Header
prompt = []
prompt.append("You are an expert reviewer. First give group summaries, then detailed line-by-line feedback.")
prompt.append(f"Title: {data['title']}")
prompt.append(f"Description: {data['body']}")
# Clusters
for c in clusters:
prompt.append(f"## Group {c['cluster_id']} ({len(c['files'])} files, avg_sim={c['avg_similarity']:.2f}): {', '.join(c['files'])}")
prompt.append("Files:")
for f in c['files']:
prompt.append(f"- {f}")
prompt.append(f"Summary: Changes in these files share semantic pattern. Focus on shared logic.")
# Anomalies
if anomalies:
prompt.append("## Isolated Files (low similarity with changed files)")
for a in anomalies:
prompt.append(f"- {a['file']} (reason: {a['reason']}, strength: {a.get('anomaly_strength')})")
# Grounding diffs per cluster/files
prompt.append("## Diff Hunks and Context:")
for entry in code_desc:
prompt.append(f"File: {entry['file_name']}\n{entry['diff_hunk']}")
if entry['overlapping_functions']:
prompt.append("Affected functions:")
for f in entry['overlapping_functions']:
prompt.append(f"- {f['function_name']}: {f['function_description']}")
# Request
prompt.append("Provide feedback on groups, then isolated files. After that provide line-by-line feedback in diff format.")
return "\n".join(prompt)
def get_current_logs():
return log_stream.getvalue()
# Pipeline
pipeline = InferencePipeline(InferenceContext("https://github.com/dotnet/xharness"))
def analyze_pr_streaming(pr_url):
log_stream.seek(0)
log_stream.truncate()
response = {}
base_review = ""
final_review = ""
visualization = None
data = pipeline._extract_pr_data(pr_url)
yield base_review, final_review, get_current_logs(), visualization
visualization = pipeline.create_repo_visualization(list(data["changed_files"]), max_files=20)
yield "", "", get_current_logs(), visualization
similarity_analysis = pipeline.analyze_file_similarity(list(data["changed_files"]))
similar_file_groups = similarity_analysis['similar_file_groups']
anomalous_files = similarity_analysis['anomalous_files']
yield "", "", get_current_logs(), visualization
code_description = pipeline.search_code_snippets(data["diff_hunks"])
comprehensive_prompt = pipeline.build_structured_prompt(data, similarity_analysis, code_description)
# Base prompt
base_prompt = f"""You are an expert reviewer. Provide detailed line-by-line feedback.
Title: {data['title']}
Description: {data['body']}
Diff: {data['diff']}
"""
# similar_file_groups_formatted = []
# for i, group in enumerate(similar_file_groups):
# files_str = ", ".join(group['files'])
# similar_file_groups_formatted.append(f"group {i}: {files_str}")
# anomalous_files_formatted = []
# for anomaly in anomalous_files:
# anomalous_files_formatted.append(f"anomaly: {anomaly['file']} (reason: {anomaly['reason']}, strength: {anomaly['anomaly_strength']})")
# grounding_formatted = ""
# for entry in code_description:
# file_name = entry['file_name']
# overlapping_functions = entry['overlapping_functions']
# diff_hunk = entry['diff_hunk']
# if len(overlapping_functions) > 0:
# grounding_formatted += f"In file {file_name}, the following changes were made: {diff_hunk}\n"
# grounding_formatted += f"These changes affected the following functions:\n"
# for func in overlapping_functions:
# grounding_formatted += f"{func['function_name']} - {func['function_description']}\n"
# else:
# grounding_formatted += f"In file {file_name}, the following changes were made: {diff_hunk}\n"
# grounding_formatted += "\n"
# # Create formatted strings for f-string
# similar_groups_text = "\n".join(similar_file_groups_formatted)
# anomalous_files_text = "\n".join(anomalous_files_formatted)
# # TODO: Add local LLM reasoning
# # TODO: Add relevant files from the directory not included
# comprehensive_prompt = f"""{base_prompt}
# FILES THAT ARE SEMANTICALLY CLOSE CHANGED IN THIS PR:
# {similar_groups_text}
# UNEXPECTED CHANGES IN FILES:
# {anomalous_files_text}
# GROUNDING DATA: The following provides specific information about which functions are affected by each diff hunk:
# {grounding_formatted}
# """
base_prompt += f"""
DIFF: {data['diff']}
"""
logger.info(f"Base prompt word count: {len(base_prompt.split())}")
logger.info(f"Base prompt: {base_prompt}")
logger.info(f"Comprehensive prompt word count: {len(comprehensive_prompt.split())}")
logger.info(f"Comprehensive prompt: {comprehensive_prompt}")
logger.info("Calling Azure OpenAI...")
yield "", "", get_current_logs(), visualization
base_review_response = pipeline.enterprise_llm.chat.completions.create(
model=DEPLOYMENT,
messages=[
{"role": "system", "content": "You are an expert code reviewer. Provide thorough, constructive feedback."},
{"role": "user", "content": base_prompt}
],
max_tokens=8192,
temperature=0.3
)
base_review = base_review_response.choices[0].message.content
logger.info("Base review completed")
final_review_response = pipeline.enterprise_llm.chat.completions.create(
model=DEPLOYMENT,
messages=[
{"role": "system", "content": "You are an expert code reviewer. Provide thorough, constructive feedback."},
{"role": "user", "content": comprehensive_prompt}
],
max_tokens=8192,
temperature=0.3
)
final_review = final_review_response.choices[0].message.content
logger.info("Final review completed")
yield base_review, final_review, get_current_logs(), visualization
with gr.Blocks(title="PR Code Review Assistant") as demo:
gr.Markdown("# PR Code Review Assistant")
gr.Markdown("Enter a GitHub PR URL to get comprehensive code review analysis with interactive repository visualization.")
with gr.Row():
pr_url_input = gr.Textbox(
label="GitHub PR URL",
placeholder="https://github.com/owner/repo/pull/123",
value="https://github.com/dotnet/xharness/pull/1416"
)
analyze_btn = gr.Button("Analyze PR", variant="primary")
with gr.Row():
with gr.Column(scale=1):
base_review_output = gr.Textbox(
label="Base Review",
lines=15,
max_lines=30,
interactive=False
)
with gr.Column(scale=1):
final_review_output = gr.Textbox(
label="Comprehensive Review",
lines=15,
max_lines=30,
interactive=False
)
with gr.Row():
with gr.Column(scale=1):
visualization_output = gr.Plot(
label="Repository Files Visualization (3D)",
value=None
)
with gr.Column(scale=1):
logs_output = gr.Textbox(
label="Analysis Logs",
lines=15,
max_lines=25,
interactive=False,
show_copy_button=True
)
analyze_btn.click(
fn=analyze_pr_streaming,
inputs=[pr_url_input],
outputs=[base_review_output, final_review_output, logs_output, visualization_output],
show_progress=True
)
if __name__ == "__main__":
demo.launch()