# Step 1: Install Hugging Face Transformers # !pip install transformers -q # Step 2: Import Required Libraries from transformers import FNetForMaskedLM, FNetTokenizer, pipeline # Step 3: Load Pretrained FNet Model and Tokenizer model = FNetForMaskedLM.from_pretrained("google/fnet-base") tokenizer = FNetTokenizer.from_pretrained("google/fnet-base") # Step 4: Create a Fill-Mask Pipeline fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) # Step 5: Use the Model to Predict the Masked Word sentence = "The sun rises in the [MASK]." results = fill_mask(sentence) # Step 6: Print the Results print(f"Input: {sentence}") print("Predictions:") for res in results: print(f">> {res['sequence']} (Score: {res['score']:.4f})")