Spaces:
Build error
Build error
| // single thread | |
| // crash the server in debug mode, otherwise send an http 500 error | |
| using namespace httplib; | |
| using json = nlohmann::json; | |
| struct server_params { | |
| std::string hostname = "127.0.0.1"; | |
| int32_t port = 8080; | |
| int32_t read_timeout = 600; | |
| int32_t write_timeout = 600; | |
| }; | |
| static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) { | |
| size_t i; | |
| for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} | |
| return i; | |
| } | |
| enum stop_type { | |
| STOP_FULL, | |
| STOP_PARTIAL, | |
| }; | |
| static bool ends_with(const std::string & str, const std::string & suffix) { | |
| return str.size() >= suffix.size() && | |
| 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
| } | |
| static size_t find_partial_stop_string(const std::string & stop, | |
| const std::string & text) { | |
| if (!text.empty() && !stop.empty()) { | |
| const char text_last_char = text.back(); | |
| for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { | |
| if (stop[char_index] == text_last_char) { | |
| const std::string current_partial = stop.substr(0, char_index + 1); | |
| if (ends_with(text, current_partial)) { | |
| return text.size() - char_index - 1; | |
| } | |
| } | |
| } | |
| } | |
| return std::string::npos; | |
| } | |
| template<class Iter> | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { | |
| std::string ret; | |
| for (; begin != end; ++begin) { | |
| ret += llama_token_to_str(ctx, *begin); | |
| } | |
| return ret; | |
| } | |
| static void server_log(const char * level, const char * function, int line, | |
| const char * message, const nlohmann::ordered_json & extra) { | |
| nlohmann::ordered_json log { | |
| { "timestamp", time(nullptr) }, | |
| { "level", level }, | |
| { "function", function }, | |
| { "line", line }, | |
| { "message", message }, | |
| }; | |
| if (!extra.empty()) { | |
| log.merge_patch(extra); | |
| } | |
| const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); | |
| fprintf(stdout, "%.*s\n", (int)str.size(), str.data()); | |
| fflush(stdout); | |
| } | |
| static bool server_verbose = false; | |
| struct llama_server_context { | |
| bool stream = false; | |
| bool has_next_token = false; | |
| std::string generated_text; | |
| size_t num_tokens_predicted = 0; | |
| size_t n_past = 0; | |
| size_t n_remain = 0; | |
| std::vector<llama_token> embd; | |
| std::vector<llama_token> last_n_tokens; | |
| llama_context * ctx = nullptr; | |
| gpt_params params; | |
| bool truncated = false; | |
| bool stopped_eos = false; | |
| bool stopped_word = false; | |
| bool stopped_limit = false; | |
| std::string stopping_word; | |
| int32_t multibyte_pending = 0; | |
| ~llama_server_context() { | |
| if (ctx) { | |
| llama_free(ctx); | |
| ctx = nullptr; | |
| } | |
| } | |
| void rewind() { | |
| params.antiprompt.clear(); | |
| num_tokens_predicted = 0; | |
| generated_text = ""; | |
| generated_text.reserve(params.n_ctx); | |
| truncated = false; | |
| stopped_eos = false; | |
| stopped_word = false; | |
| stopped_limit = false; | |
| stopping_word = ""; | |
| multibyte_pending = 0; | |
| n_remain = 0; | |
| n_past = 0; | |
| } | |
| bool loadModel(const gpt_params & params_) { | |
| params = params_; | |
| ctx = llama_init_from_gpt_params(params); | |
| if (ctx == nullptr) { | |
| LOG_ERROR("unable to load model", { { "model", params_.model } }); | |
| return false; | |
| } | |
| last_n_tokens.resize(params.n_ctx); | |
| std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); | |
| return true; | |
| } | |
| void loadPrompt() { | |
| params.prompt.insert(0, 1, ' '); // always add a first space | |
| std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); | |
| if (params.n_keep < 0) { | |
| params.n_keep = (int)prompt_tokens.size(); | |
| } | |
| params.n_keep = std::min(params.n_ctx - 4, params.n_keep); | |
| // if input prompt is too big, truncate like normal | |
| if (prompt_tokens.size() >= (size_t)params.n_ctx) { | |
| const int n_left = (params.n_ctx - params.n_keep) / 2; | |
| std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); | |
| const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left; | |
| new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); | |
| std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); | |
| LOG_VERBOSE("input truncated", { | |
| { "n_ctx", params.n_ctx }, | |
| { "n_keep", params.n_keep }, | |
| { "n_left", n_left }, | |
| { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, | |
| }); | |
| truncated = true; | |
| prompt_tokens = new_tokens; | |
| } else { | |
| const size_t ps = prompt_tokens.size(); | |
| std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); | |
| std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); | |
| } | |
| // compare the evaluated prompt with the new prompt | |
| n_past = common_part(embd, prompt_tokens); | |
| embd = prompt_tokens; | |
| if (n_past == prompt_tokens.size()) { | |
| // we have to evaluate at least 1 token to generate logits. | |
| n_past--; | |
| } | |
| LOG_VERBOSE("prompt ingested", { | |
| { "n_past", n_past }, | |
| { "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) }, | |
| { "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, | |
| }); | |
| has_next_token = true; | |
| } | |
| void beginCompletion() { | |
| // number of tokens to keep when resetting context | |
| n_remain = params.n_predict; | |
| llama_set_rng_seed(ctx, params.seed); | |
| } | |
| llama_token nextToken() { | |
| llama_token result = -1; | |
| if (embd.size() >= (size_t)params.n_ctx) { | |
| // Reset context | |
| const int n_left = (params.n_ctx - params.n_keep) / 2; | |
| std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep); | |
| new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end()); | |
| embd = new_tokens; | |
| n_past = params.n_keep; | |
| truncated = true; | |
| LOG_VERBOSE("input truncated", { | |
| { "n_ctx", params.n_ctx }, | |
| { "n_keep", params.n_keep }, | |
| { "n_left", n_left }, | |
| { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, | |
| }); | |
| } | |
| while (n_past < embd.size()) { | |
| int n_eval = (int)embd.size() - n_past; | |
| if (n_eval > params.n_batch) { | |
| n_eval = params.n_batch; | |
| } | |
| if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) { | |
| LOG_ERROR("failed to eval", { | |
| { "n_eval", n_eval }, | |
| { "n_past", n_past }, | |
| { "n_threads", params.n_threads }, | |
| { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, | |
| }); | |
| has_next_token = false; | |
| return result; | |
| } | |
| n_past += n_eval; | |
| } | |
| // out of user input, sample next token | |
| const float temp = params.temp; | |
| const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; | |
| const float top_p = params.top_p; | |
| const float tfs_z = params.tfs_z; | |
| const float typical_p = params.typical_p; | |
| const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; | |
| const float repeat_penalty = params.repeat_penalty; | |
| const float alpha_presence = params.presence_penalty; | |
| const float alpha_frequency = params.frequency_penalty; | |
| const int mirostat = params.mirostat; | |
| const float mirostat_tau = params.mirostat_tau; | |
| const float mirostat_eta = params.mirostat_eta; | |
| const bool penalize_nl = params.penalize_nl; | |
| llama_token id = 0; | |
| { | |
| auto * logits = llama_get_logits(ctx); | |
| auto n_vocab = llama_n_vocab(ctx); | |
| // Apply params.logit_bias map | |
| for (const auto & it : params.logit_bias) { | |
| logits[it.first] += it.second; | |
| } | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); | |
| } | |
| llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
| // Apply penalties | |
| float nl_logit = logits[llama_token_nl()]; | |
| auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); | |
| llama_sample_repetition_penalty(ctx, &candidates_p, | |
| last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
| last_n_repeat, repeat_penalty); | |
| llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, | |
| last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
| last_n_repeat, alpha_frequency, alpha_presence); | |
| if (!penalize_nl) { | |
| logits[llama_token_nl()] = nl_logit; | |
| } | |
| if (temp <= 0) { | |
| // Greedy sampling | |
| id = llama_sample_token_greedy(ctx, &candidates_p); | |
| } else { | |
| if (mirostat == 1) { | |
| static float mirostat_mu = 2.0f * mirostat_tau; | |
| const int mirostat_m = 100; | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); | |
| } else if (mirostat == 2) { | |
| static float mirostat_mu = 2.0f * mirostat_tau; | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); | |
| } else { | |
| // Temperature sampling | |
| llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); | |
| llama_sample_typical(ctx, &candidates_p, typical_p, 1); | |
| llama_sample_top_p(ctx, &candidates_p, top_p, 1); | |
| llama_sample_top_k(ctx, &candidates_p, top_k, 1); | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| id = llama_sample_token(ctx, &candidates_p); | |
| } | |
| } | |
| last_n_tokens.erase(last_n_tokens.begin()); | |
| last_n_tokens.push_back(id); | |
| num_tokens_predicted++; | |
| } | |
| // add it to the context | |
| embd.push_back(id); | |
| result = id; | |
| // decrement remaining sampling budget | |
| --n_remain; | |
| if (!embd.empty() && embd.back() == llama_token_eos()) { | |
| //stopping_word = llama_token_to_str(ctx, embd.back()); | |
| has_next_token = false; | |
| stopped_eos = true; | |
| LOG_VERBOSE("eos token found", {}); | |
| return result; | |
| } | |
| has_next_token = params.n_predict == -1 || n_remain != 0; | |
| return result; | |
| } | |
| size_t findStoppingStrings(const std::string & text, const size_t last_token_size, | |
| const stop_type type) { | |
| size_t stop_pos = std::string::npos; | |
| for (const std::string & word : params.antiprompt) { | |
| size_t pos; | |
| if (type == STOP_FULL) { | |
| const size_t tmp = word.size() + last_token_size; | |
| const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; | |
| pos = text.find(word, from_pos); | |
| } | |
| else { | |
| pos = find_partial_stop_string(word, text); | |
| } | |
| if (pos != std::string::npos && | |
| (stop_pos == std::string::npos || pos < stop_pos)) { | |
| if (type == STOP_FULL) { | |
| stopping_word = word; | |
| stopped_word = true; | |
| has_next_token = false; | |
| } | |
| stop_pos = pos; | |
| } | |
| } | |
| return stop_pos; | |
| } | |
| std::string doCompletion() { | |
| const llama_token token = nextToken(); | |
| const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token); | |
| generated_text += token_text; | |
| if (multibyte_pending > 0) { | |
| multibyte_pending -= token_text.size(); | |
| } else if (token_text.size() == 1) { | |
| const char c = token_text[0]; | |
| // 2-byte characters: 110xxxxx 10xxxxxx | |
| if ((c & 0xE0) == 0xC0) { | |
| multibyte_pending = 1; | |
| // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx | |
| } else if ((c & 0xF0) == 0xE0) { | |
| multibyte_pending = 2; | |
| // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | |
| } else if ((c & 0xF8) == 0xF0) { | |
| multibyte_pending = 3; | |
| } else { | |
| multibyte_pending = 0; | |
| } | |
| } | |
| if (multibyte_pending > 0 && !has_next_token) { | |
| has_next_token = true; | |
| n_remain++; | |
| } | |
| if (!has_next_token && n_remain == 0) { | |
| stopped_limit = true; | |
| } | |
| LOG_VERBOSE("next token", { | |
| { "token", token }, | |
| { "token_text", llama_token_to_str(ctx, token) }, | |
| { "has_next_token", has_next_token }, | |
| { "n_remain", n_remain }, | |
| { "num_tokens_predicted", num_tokens_predicted }, | |
| { "stopped_eos", stopped_eos }, | |
| { "stopped_word", stopped_word }, | |
| { "stopped_limit", stopped_limit }, | |
| { "stopping_word", stopping_word }, | |
| }); | |
| return token_text; | |
| } | |
| }; | |
| static void server_print_usage(const char * argv0, const gpt_params & params, | |
| const server_params & sparams) { | |
| fprintf(stderr, "usage: %s [options]\n", argv0); | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "options:\n"); | |
| fprintf(stderr, " -h, --help show this help message and exit\n"); | |
| fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); | |
| fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | |
| fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); | |
| fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); | |
| fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); | |
| fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n"); | |
| if (llama_mlock_supported()) { | |
| fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); | |
| } | |
| if (llama_mmap_supported()) { | |
| fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); | |
| } | |
| fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); | |
| fprintf(stderr, " number of layers to store in VRAM\n"); | |
| fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); | |
| fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
| fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
| fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); | |
| fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n"); | |
| fprintf(stderr, " -m FNAME, --model FNAME\n"); | |
| fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); | |
| fprintf(stderr, " -a ALIAS, --alias ALIAS\n"); | |
| fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n"); | |
| fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); | |
| fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); | |
| fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); | |
| fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port); | |
| fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); | |
| fprintf(stderr, "\n"); | |
| } | |
| static void server_params_parse(int argc, char ** argv, server_params & sparams, | |
| gpt_params & params) { | |
| gpt_params default_params; | |
| server_params default_sparams; | |
| std::string arg; | |
| bool invalid_param = false; | |
| for (int i = 1; i < argc; i++) { | |
| arg = argv[i]; | |
| if (arg == "--port") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.port = std::stoi(argv[i]); | |
| } else if (arg == "--host") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.hostname = argv[i]; | |
| } else if (arg == "--timeout" || arg == "-to") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.read_timeout = std::stoi(argv[i]); | |
| sparams.write_timeout = std::stoi(argv[i]); | |
| } else if (arg == "-m" || arg == "--model") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.model = argv[i]; | |
| } else if (arg == "-a" || arg == "--alias") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.model_alias = argv[i]; | |
| } else if (arg == "-h" || arg == "--help") { | |
| server_print_usage(argv[0], default_params, default_sparams); | |
| exit(0); | |
| } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_ctx = std::stoi(argv[i]); | |
| } else if (arg == "--memory-f32" || arg == "--memory_f32") { | |
| params.memory_f16 = false; | |
| } else if (arg == "--threads" || arg == "-t") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_threads = std::stoi(argv[i]); | |
| } else if (arg == "-b" || arg == "--batch-size") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_batch = std::stoi(argv[i]); | |
| params.n_batch = std::min(512, params.n_batch); | |
| } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_gpu_layers = std::stoi(argv[i]); | |
| LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " | |
| "See main README.md for information on enabling GPU BLAS support", { { "n_gpu_layers", params.n_gpu_layers } }); | |
| } | |
| else if (arg == "--tensor-split" || arg == "-ts") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| std::string arg_next = argv[i]; | |
| // split string by , and / | |
| const std::regex regex{ R"([,/]+)" }; | |
| std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; | |
| std::vector<std::string> split_arg{ it, {} }; | |
| GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); | |
| for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) { | |
| if (i_device < split_arg.size()) { | |
| params.tensor_split[i_device] = std::stof(split_arg[i_device]); | |
| } | |
| else { | |
| params.tensor_split[i_device] = 0.0f; | |
| } | |
| } | |
| LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {}); | |
| } | |
| else if (arg == "--low-vram" || arg == "-lv") | |
| { | |
| params.low_vram = true; | |
| fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); | |
| } | |
| else if (arg == "--main-gpu" || arg == "-mg") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.main_gpu = std::stoi(argv[i]); | |
| LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); | |
| } else if (arg == "--lora") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.lora_adapter = argv[i]; | |
| params.use_mmap = false; | |
| } else if (arg == "--lora-base") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.lora_base = argv[i]; | |
| } else if (arg == "-v" || arg == "--verbose") { | |
| LOG_WARNING("server.cpp is not built with verbose logging.", {}); | |
| server_verbose = true; | |
| } else if (arg == "--mlock") { | |
| params.use_mlock = true; | |
| } else if (arg == "--no-mmap") { | |
| params.use_mmap = false; | |
| } else { | |
| fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
| server_print_usage(argv[0], default_params, default_sparams); | |
| exit(1); | |
| } | |
| } | |
| if (invalid_param) { | |
| fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
| server_print_usage(argv[0], default_params, default_sparams); | |
| exit(1); | |
| } | |
| } | |
| static json format_generation_settings(llama_server_context & llama) { | |
| const auto eos_bias = llama.params.logit_bias.find(llama_token_eos()); | |
| const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && | |
| eos_bias->second < 0.0f && std::isinf(eos_bias->second); | |
| return json { | |
| { "seed", llama.params.seed }, | |
| { "temp", llama.params.temp }, | |
| { "top_k", llama.params.top_k }, | |
| { "top_p", llama.params.top_p }, | |
| { "tfs_z", llama.params.tfs_z }, | |
| { "typical_p", llama.params.typical_p }, | |
| { "repeat_last_n", llama.params.repeat_last_n }, | |
| { "repeat_penalty", llama.params.repeat_penalty }, | |
| { "presence_penalty", llama.params.presence_penalty }, | |
| { "frequency_penalty", llama.params.frequency_penalty }, | |
| { "mirostat", llama.params.mirostat }, | |
| { "mirostat_tau", llama.params.mirostat_tau }, | |
| { "mirostat_eta", llama.params.mirostat_eta }, | |
| { "penalize_nl", llama.params.penalize_nl }, | |
| { "stop", llama.params.antiprompt }, | |
| { "n_predict", llama.params.n_predict }, | |
| { "n_keep", llama.params.n_keep }, | |
| { "ignore_eos", ignore_eos }, | |
| { "stream", llama.stream }, | |
| { "logit_bias", llama.params.logit_bias }, | |
| }; | |
| } | |
| static json format_final_response(llama_server_context & llama, const std::string & content) { | |
| return json { | |
| { "content", content }, | |
| { "stop", true }, | |
| { "model", llama.params.model_alias }, | |
| { "tokens_predicted", llama.num_tokens_predicted }, | |
| { "generation_settings", format_generation_settings(llama) }, | |
| { "prompt", llama.params.prompt }, | |
| { "truncated", llama.truncated }, | |
| { "stopped_eos", llama.stopped_eos }, | |
| { "stopped_word", llama.stopped_word }, | |
| { "stopped_limit", llama.stopped_limit }, | |
| { "stopping_word", llama.stopping_word }, | |
| }; | |
| } | |
| static json format_partial_response(const std::string & content) { | |
| return json { | |
| { "content", content }, | |
| { "stop", false }, | |
| }; | |
| } | |
| static json format_tokenizer_response(const std::vector<llama_token> & tokens) { | |
| return json { | |
| { "tokens", tokens } | |
| }; | |
| } | |
| static void parse_options_completion(const json & body, llama_server_context & llama) { | |
| gpt_params default_params; | |
| llama.stream = body.value("stream", false); | |
| llama.params.n_predict = body.value("n_predict", default_params.n_predict); | |
| llama.params.top_k = body.value("top_k", default_params.top_k); | |
| llama.params.top_p = body.value("top_p", default_params.top_p); | |
| llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z); | |
| llama.params.typical_p = body.value("typical_p", default_params.typical_p); | |
| llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n); | |
| llama.params.temp = body.value("temperature", default_params.temp); | |
| llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty); | |
| llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty); | |
| llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty); | |
| llama.params.mirostat = body.value("mirostat", default_params.mirostat); | |
| llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau); | |
| llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta); | |
| llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl); | |
| llama.params.n_keep = body.value("n_keep", default_params.n_keep); | |
| llama.params.seed = body.value("seed", default_params.seed); | |
| llama.params.prompt = body.value("prompt", default_params.prompt); | |
| llama.params.logit_bias.clear(); | |
| if (body.value("ignore_eos", false)) { | |
| llama.params.logit_bias[llama_token_eos()] = -INFINITY; | |
| } | |
| const auto & logit_bias = body.find("logit_bias"); | |
| if (logit_bias != body.end() && logit_bias->is_array()) { | |
| const int n_vocab = llama_n_vocab(llama.ctx); | |
| for (const auto & el : *logit_bias) { | |
| if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) { | |
| llama_token tok = el[0].get<llama_token>(); | |
| if (tok >= 0 && tok < n_vocab) { | |
| if (el[1].is_number()) { | |
| llama.params.logit_bias[tok] = el[1].get<float>(); | |
| } else if (el[1].is_boolean() && !el[1].get<bool>()) { | |
| llama.params.logit_bias[tok] = -INFINITY; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| llama.params.antiprompt.clear(); | |
| const auto & stop = body.find("stop"); | |
| if (stop != body.end() && stop->is_array()) { | |
| for (const auto & word : *stop) { | |
| if (!word.empty()) { | |
| llama.params.antiprompt.push_back(word); | |
| } | |
| } | |
| } | |
| LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); | |
| } | |
| static void log_server_request(const Request & req, const Response & res) { | |
| LOG_INFO("request", { | |
| { "remote_addr", req.remote_addr }, | |
| { "remote_port", req.remote_port }, | |
| { "status", res.status }, | |
| { "path", req.path }, | |
| { "request", req.body }, | |
| { "response", res.body }, | |
| }); | |
| } | |
| int main(int argc, char ** argv) { | |
| // own arguments required by this example | |
| gpt_params params; | |
| server_params sparams; | |
| // struct that contains llama context and inference | |
| llama_server_context llama; | |
| server_params_parse(argc, argv, sparams, params); | |
| if (params.model_alias == "unknown") { | |
| params.model_alias = params.model; | |
| } | |
| llama_init_backend(); | |
| LOG_INFO("build info", { | |
| { "build", BUILD_NUMBER }, | |
| { "commit", BUILD_COMMIT } | |
| }); | |
| LOG_INFO("system info", { | |
| { "n_threads", params.n_threads }, | |
| { "total_threads", std::thread::hardware_concurrency() }, | |
| { "system_info", llama_print_system_info() }, | |
| }); | |
| // load the model | |
| if (!llama.loadModel(params)) { | |
| return 1; | |
| } | |
| Server svr; | |
| svr.set_default_headers({ | |
| { "Access-Control-Allow-Origin", "*" }, | |
| { "Access-Control-Allow-Headers", "content-type" } | |
| }); | |
| svr.Get("/", [](const Request &, Response & res) { | |
| res.set_content("<h1>llama.cpp server works</h1>", "text/html"); | |
| }); | |
| svr.Post("/completion", [&llama](const Request & req, Response & res) { | |
| llama.rewind(); | |
| llama_reset_timings(llama.ctx); | |
| parse_options_completion(json::parse(req.body), llama); | |
| llama.loadPrompt(); | |
| llama.beginCompletion(); | |
| if (!llama.stream) { | |
| size_t stop_pos = std::string::npos; | |
| while (llama.has_next_token) { | |
| const std::string token_text = llama.doCompletion(); | |
| stop_pos = llama.findStoppingStrings(llama.generated_text, | |
| token_text.size(), STOP_FULL); | |
| } | |
| if (stop_pos == std::string::npos) { | |
| stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); | |
| } | |
| if (stop_pos != std::string::npos) { | |
| llama.generated_text.erase(llama.generated_text.begin() + stop_pos, | |
| llama.generated_text.end()); | |
| } | |
| const json data = format_final_response(llama, llama.generated_text); | |
| llama_print_timings(llama.ctx); | |
| res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), | |
| "application/json"); | |
| } else { | |
| const auto chunked_content_provider = [&](size_t, DataSink & sink) { | |
| size_t sent_count = 0; | |
| while (llama.has_next_token) { | |
| const std::string token_text = llama.doCompletion(); | |
| if (llama.multibyte_pending > 0) { | |
| continue; | |
| } | |
| size_t pos = std::min(sent_count, llama.generated_text.size()); | |
| const std::string str_test = llama.generated_text.substr(pos); | |
| size_t stop_pos = | |
| llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); | |
| if (stop_pos != std::string::npos) { | |
| llama.generated_text.erase( | |
| llama.generated_text.begin() + pos + stop_pos, | |
| llama.generated_text.end()); | |
| pos = std::min(sent_count, llama.generated_text.size()); | |
| } else { | |
| stop_pos = llama.findStoppingStrings(str_test, token_text.size(), | |
| STOP_PARTIAL); | |
| } | |
| const std::string to_send = llama.generated_text.substr(pos, stop_pos); | |
| sent_count += to_send.size(); | |
| const json data = llama.has_next_token | |
| ? format_partial_response(to_send) | |
| // Generation is done, send extra information. | |
| : format_final_response(llama, to_send); | |
| const std::string str = | |
| "data: " + | |
| data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
| "\n\n"; | |
| LOG_VERBOSE("data stream", { | |
| { "to_send", str } | |
| }); | |
| if (!sink.write(str.data(), str.size())) { | |
| LOG_VERBOSE("stream closed", {}); | |
| llama_print_timings(llama.ctx); | |
| return false; | |
| } | |
| } | |
| llama_print_timings(llama.ctx); | |
| sink.done(); | |
| return true; | |
| }; | |
| res.set_chunked_content_provider("text/event-stream", chunked_content_provider); | |
| } | |
| }); | |
| svr.Options(R"(/.*)", [](const Request &, Response & res) { | |
| return res.set_content("", "application/json"); | |
| }); | |
| svr.Post("/tokenize", [&llama](const Request & req, Response & res) { | |
| const json body = json::parse(req.body); | |
| const std::string content = body["content"].get<std::string>(); | |
| const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false); | |
| const json data = format_tokenizer_response(tokens); | |
| return res.set_content(data.dump(), "application/json"); | |
| }); | |
| svr.set_logger(log_server_request); | |
| svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) { | |
| const auto * fmt = "500 Internal Server Error\n%s"; | |
| char buf[BUFSIZ]; | |
| try { | |
| std::rethrow_exception(std::move(ep)); | |
| } catch (std::exception & e) { | |
| snprintf(buf, sizeof(buf), fmt, e.what()); | |
| } catch (...) { | |
| snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); | |
| } | |
| res.set_content(buf, "text/plain"); | |
| res.status = 500; | |
| }); | |
| // set timeouts and change hostname and port | |
| svr.set_read_timeout(sparams.read_timeout); | |
| svr.set_write_timeout(sparams.write_timeout); | |
| if (!svr.bind_to_port(sparams.hostname, sparams.port)) { | |
| LOG_ERROR("couldn't bind to server socket", { | |
| { "hostname", sparams.hostname }, | |
| { "port", sparams.port }, | |
| }); | |
| return 1; | |
| } | |
| LOG_INFO("HTTP server listening", { | |
| { "hostname", sparams.hostname }, | |
| { "port", sparams.port }, | |
| }); | |
| if (!svr.listen_after_bind()) { | |
| return 1; | |
| } | |
| return 0; | |
| } | |