Train / app.py
kvn420's picture
Update app.py
5bbee23 verified
import gradio as gr
import os
import subprocess
import sys
import requests
import json
import logging
from typing import Dict, List, Optional, Union
import time
import tempfile
import shutil
import importlib
# Configuration du logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Fonction d'installation automatique
def install_package(package_name):
"""Installe un package Python"""
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name, "--quiet"])
logger.info(f"✅ {package_name} installé avec succès")
return True
except subprocess.CalledProcessError as e:
logger.error(f"❌ Erreur installation {package_name}: {e}")
return False
# Fonction pour recharger les modules après installation
def reload_module(module_name):
"""Recharge un module après installation"""
try:
if module_name in sys.modules:
importlib.reload(sys.modules[module_name])
else:
__import__(module_name)
return True
except Exception as e:
logger.error(f"Erreur rechargement {module_name}: {e}")
return False
# Imports conditionnels avec vérification
def check_and_import_dependencies():
"""Vérifie et importe toutes les dépendances"""
global numpy, torch, NUMPY_AVAILABLE, TORCH_AVAILABLE, TRANSFORMERS_AVAILABLE
global DATASETS_AVAILABLE, HF_HUB_AVAILABLE, PIL_AVAILABLE, LIBROSA_AVAILABLE, CV2_AVAILABLE
global AutoTokenizer, AutoModel, AutoProcessor, AutoModelForCausalLM, AutoConfig
global TrainingArguments, Trainer, DataCollatorForLanguageModeling
global Dataset, load_dataset, concatenate_datasets, HfApi, Image, librosa, cv2
# NumPy
try:
import numpy
NUMPY_AVAILABLE = True
except ImportError:
numpy = None
NUMPY_AVAILABLE = False
# PyTorch
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
torch = None
TORCH_AVAILABLE = False
# Transformers
try:
from transformers import (
AutoTokenizer, AutoModel, AutoProcessor, AutoConfig,
AutoModelForCausalLM, TrainingArguments, Trainer,
DataCollatorForLanguageModeling
)
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
AutoTokenizer = AutoModel = AutoProcessor = AutoConfig = None
AutoModelForCausalLM = TrainingArguments = Trainer = None
DataCollatorForLanguageModeling = None
# Datasets
try:
from datasets import Dataset, load_dataset, concatenate_datasets
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
Dataset = load_dataset = concatenate_datasets = None
# HuggingFace Hub
try:
from huggingface_hub import HfApi
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
HfApi = None
# PIL
try:
from PIL import Image
PIL_AVAILABLE = True
except ImportError:
PIL_AVAILABLE = False
Image = None
# Librosa
try:
import librosa
LIBROSA_AVAILABLE = True
except ImportError:
LIBROSA_AVAILABLE = False
librosa = None
# OpenCV
try:
import cv2
CV2_AVAILABLE = True
except ImportError:
CV2_AVAILABLE = False
cv2 = None
# Initialisation des imports
check_and_import_dependencies()
class MultimodalTrainer:
def __init__(self):
self.current_model = None
self.current_tokenizer = None
self.current_processor = None
self.training_data = []
# Device selection
if TORCH_AVAILABLE and torch and torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = "cpu"
# HF API
if HF_HUB_AVAILABLE and HfApi:
self.hf_api = HfApi()
else:
self.hf_api = None
def install_dependencies(self, packages_to_install):
"""Installe les dépendances manquantes"""
installation_results = []
# Mapping des packages avec versions spécifiques
package_mapping = {
"torch": "torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cpu",
"transformers": "transformers>=4.46.2",
"datasets": "datasets>=2.21.0",
"accelerate": "accelerate>=1.1.0",
"pillow": "pillow>=10.1.0",
"librosa": "librosa>=0.10.1",
"opencv": "opencv-python-headless>=4.8.1.78",
"huggingface_hub": "huggingface_hub>=0.26.0",
"qwen": "qwen-vl-utils>=0.0.8"
}
for package in packages_to_install:
installation_results.append(f"📦 Installation de {package}...")
# Utilise le mapping si disponible
install_cmd = package_mapping.get(package.lower(), package)
if package.lower() == "torch":
# Installation spéciale pour PyTorch
try:
subprocess.check_call([
sys.executable, "-m", "pip", "install",
"torch==2.1.0", "torchvision==0.16.0", "torchaudio==2.1.0",
"--index-url", "https://download.pytorch.org/whl/cpu",
"--quiet"
])
success = True
except subprocess.CalledProcessError:
success = False
else:
success = install_package(install_cmd)
if success:
installation_results.append(f"✅ {package} installé avec succès!")
else:
installation_results.append(f"❌ Échec installation {package}")
# Recharge les dépendances après installation
installation_results.append("\n🔄 Rechargement des modules...")
check_and_import_dependencies()
self.__init__() # Réinitialise l'instance
installation_results.append("✅ Modules rechargés!")
return "\n".join(installation_results)
def check_dependencies(self):
"""Vérifie et affiche l'état des dépendances"""
# Force la vérification
check_and_import_dependencies()
deps = {
"PyTorch": TORCH_AVAILABLE,
"Transformers": TRANSFORMERS_AVAILABLE,
"Datasets": DATASETS_AVAILABLE,
"NumPy": NUMPY_AVAILABLE,
"HuggingFace Hub": HF_HUB_AVAILABLE,
"PIL": PIL_AVAILABLE,
"Librosa": LIBROSA_AVAILABLE,
"OpenCV": CV2_AVAILABLE
}
status = "📦 État des dépendances:\n\n"
# Dépendances critiques
critical_deps = ["PyTorch", "Transformers", "Datasets"]
status += "🔥 CRITIQUES:\n"
for dep in critical_deps:
icon = "✅" if deps.get(dep) else "❌"
status += f"{icon} {dep}\n"
status += "\n🔧 OPTIONNELLES:\n"
optional_deps = ["NumPy", "HuggingFace Hub", "PIL", "Librosa", "OpenCV"]
for dep in optional_deps:
icon = "✅" if deps.get(dep) else "⚠️"
status += f"{icon} {dep}\n"
# Système info
status += f"\n💻 SYSTÈME:\n"
status += f"🐍 Python: {sys.version.split()[0]}\n"
status += f"💾 Device: {self.device}\n"
if TORCH_AVAILABLE and torch and torch.cuda.is_available():
status += f"🚀 GPU: {torch.cuda.get_device_name()}\n"
status += f"🔋 VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB\n"
# Versions spécifiques
if TRANSFORMERS_AVAILABLE:
import transformers
status += f"🤗 Transformers: {transformers.__version__}\n"
return status
def load_model_safe(self, model_name: str):
"""Chargement sécurisé du modèle avec gestion d'erreurs avancée"""
if not TRANSFORMERS_AVAILABLE:
return "❌ Transformers non installé! Utilisez l'outil d'installation.", None, None
if not TORCH_AVAILABLE or not torch:
return "❌ PyTorch non installé! Utilisez l'outil d'installation.", None, None
try:
logger.info(f"Chargement sécurisé du modèle: {model_name}")
# Étape 1: Vérification de la configuration
try:
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
logger.info(f"Configuration chargée: {config.model_type}")
except Exception as e:
return f"❌ Erreur configuration: {str(e)}", None, None
# Étape 2: Chargement du tokenizer
tokenizer = None
try:
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Tokenizer chargé avec succès")
except Exception as e:
logger.warning(f"Tokenizer non trouvé: {e}")
return f"❌ Erreur tokenizer: {str(e)}", None, None
# Étape 3: Chargement du modèle avec stratégies multiples
model = None
loading_strategies = [
{
"name": "AutoModelForCausalLM standard",
"loader": lambda: AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
},
{
"name": "AutoModelForCausalLM avec config explicite",
"loader": lambda: AutoModelForCausalLM.from_pretrained(
model_name,
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True,
low_cpu_mem_usage=True,
attn_implementation="eager"
)
},
{
"name": "AutoModel générique",
"loader": lambda: AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
}
]
last_error = None
for strategy in loading_strategies:
try:
logger.info(f"Tentative: {strategy['name']}")
model = strategy["loader"]()
logger.info(f"✅ Succès avec: {strategy['name']}")
break
except Exception as e:
last_error = str(e)
logger.warning(f"❌ Échec {strategy['name']}: {e}")
continue
if model is None:
return f"❌ Toutes les stratégies ont échoué. Dernière erreur: {last_error}", None, None
# Étape 4: Chargement du processor (optionnel)
processor = None
try:
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
logger.info("Processor chargé avec succès")
except Exception as e:
logger.warning(f"Processor non disponible: {e}")
return "✅ Modèle chargé avec succès!", model, tokenizer, processor
except Exception as e:
error_msg = f"❌ Erreur critique: {str(e)}"
logger.error(error_msg)
return error_msg, None, None
def load_model(self, model_name: str, model_type: str = "causal"):
"""Charge un modèle depuis Hugging Face avec gestion d'erreurs améliorée"""
if not model_name.strip():
return "❌ Veuillez entrer un nom de modèle"
# Utilise la méthode sécurisée
result = self.load_model_safe(model_name)
if len(result) == 4: # Succès
message, model, tokenizer, processor = result
self.current_model = model
self.current_tokenizer = tokenizer
self.current_processor = processor
# Informations détaillées
info = f"{message}\n"
info += f"🏷️ Type: {type(model).__name__}\n"
if hasattr(model, 'config'):
info += f"🏗️ Architecture: {getattr(model.config, 'architectures', ['Inconnue'])[0] if hasattr(model.config, 'architectures') else 'Inconnue'}\n"
info += f"📋 Model type: {getattr(model.config, 'model_type', 'Non défini')}\n"
if TORCH_AVAILABLE and torch:
info += f"💾 Device: {next(model.parameters()).device}\n"
total_params = sum(p.numel() for p in model.parameters())
info += f"🔢 Paramètres: {total_params:,}\n"
return info
else:
# Erreur
return result[0]
def diagnose_model(self, model_name: str):
"""Diagnostique avancé d'un modèle"""
if not model_name.strip():
return "❌ Veuillez entrer un nom de modèle"
try:
result = f"🔍 DIAGNOSTIC APPROFONDI: {model_name}\n\n"
# Vérification de l'existence
try:
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
result += "✅ Modèle accessible sur Hugging Face\n\n"
# Analyse de la configuration
result += "📋 CONFIGURATION:\n"
result += f"🏷️ Model type: {getattr(config, 'model_type', '❌ NON DÉFINI')}\n"
result += f"🏗️ Architectures: {getattr(config, 'architectures', ['❌ NON DÉFINI'])}\n"
result += f"📚 Vocab size: {getattr(config, 'vocab_size', 'Inconnu'):,}\n"
result += f"🧠 Hidden size: {getattr(config, 'hidden_size', 'Inconnu')}\n"
result += f"🔢 Layers: {getattr(config, 'num_hidden_layers', 'Inconnu')}\n"
result += f"🎯 Attention heads: {getattr(config, 'num_attention_heads', 'Inconnu')}\n"
# Vérification des problèmes courants
result += "\n🔧 ANALYSE DES PROBLÈMES:\n"
if not hasattr(config, 'model_type') or config.model_type is None:
result += "⚠️ PROBLÈME: model_type manquant\n"
if hasattr(config, 'architectures') and config.architectures:
arch = config.architectures[0].lower()
suggested_type = None
if 'qwen' in arch:
suggested_type = 'qwen2' if 'qwen2' in arch else 'qwen'
elif 'llama' in arch:
suggested_type = 'llama'
elif 'mistral' in arch:
suggested_type = 'mistral'
elif 'phi' in arch:
suggested_type = 'phi'
if suggested_type:
result += f"💡 Type suggéré: {suggested_type}\n"
else:
result += f"✅ Model type défini: {config.model_type}\n"
# Vérification de la compatibilité avec Transformers
if hasattr(config, 'architectures') and config.architectures:
arch = config.architectures[0]
if 'Qwen2_5OmniForCausalLM' in arch:
result += "⚠️ Architecture Qwen2.5-Omni détectée\n"
result += "💡 Nécessite Transformers >= 4.45.0\n"
if TRANSFORMERS_AVAILABLE:
import transformers
current_version = transformers.__version__
result += f"📦 Version actuelle: {current_version}\n"
# Stratégies de chargement recommandées
result += "\n🎯 STRATÉGIES DE CHARGEMENT:\n"
result += "1️⃣ AutoModelForCausalLM avec trust_remote_code=True\n"
result += "2️⃣ Configuration explicite si model_type manquant\n"
result += "3️⃣ Fallback vers AutoModel générique\n"
result += "\n✅ Diagnostic terminé - Chargement possible avec adaptations"
except Exception as e:
result += f"❌ Erreur d'accès: {str(e)}\n"
# Suggestions basées sur l'erreur
if "404" in str(e):
result += "💡 Le modèle n'existe pas ou n'est pas public\n"
elif "token" in str(e).lower():
result += "💡 Un token d'authentification pourrait être nécessaire\n"
else:
result += "💡 Vérifiez le nom du modèle et votre connexion\n"
return result
except Exception as e:
return f"❌ Erreur diagnostic: {str(e)}"
def load_single_dataset(self, dataset_name: str, split: str = "train"):
"""Charge un dataset individuel"""
if not DATASETS_AVAILABLE or not load_dataset:
return "❌ Datasets non installé! Utilisez l'outil d'installation."
if not dataset_name.strip():
return "❌ Veuillez entrer un nom de dataset"
try:
dataset = load_dataset(dataset_name, split=split)
if hasattr(self, 'training_data') and self.training_data:
self.training_data = concatenate_datasets([self.training_data, dataset])
else:
self.training_data = dataset
return f"✅ Dataset {dataset_name} ajouté!\n📊 Total: {len(self.training_data)} exemples\n🔍 Colonnes: {list(self.training_data.column_names)}"
except Exception as e:
error_msg = f"❌ Erreur dataset: {str(e)}"
logger.error(error_msg)
return error_msg
def simulate_training(self, output_dir: str, num_epochs: int, learning_rate: float, batch_size: int):
"""Simulation d'entraînement (mode démo)"""
if not self.current_model and not self.training_data:
return "❌ Aucun modèle ou donnée chargé!"
# Simulation
steps = ["🏗️ Préparation des données", "🔧 Configuration du modèle", "🚀 Début entraînement"]
result = "📋 SIMULATION D'ENTRAÎNEMENT:\n\n"
result += f"📂 Sortie: {output_dir}\n"
result += f"🔄 Époques: {num_epochs}\n"
result += f"📚 Learning rate: {learning_rate}\n"
result += f"📦 Batch size: {batch_size}\n\n"
for i, step in enumerate(steps):
result += f"Étape {i+1}: {step} ✅\n"
if TORCH_AVAILABLE and TRANSFORMERS_AVAILABLE:
result += "\n✅ Prêt pour un vrai entraînement!"
else:
result += "\n⚠️ MODE DÉMO - Installez PyTorch + Transformers pour un vrai entraînement"
return result
def get_model_info(self):
"""Retourne les informations du modèle actuel"""
if not self.current_model:
return "❌ Aucun modèle chargé"
info = f"📋 INFORMATIONS DU MODÈLE:\n\n"
info += f"🏷️ Type: {type(self.current_model).__name__}\n"
if TORCH_AVAILABLE and torch:
info += f"💾 Device: {next(self.current_model.parameters()).device}\n"
# Compte les paramètres
total_params = sum(p.numel() for p in self.current_model.parameters())
trainable_params = sum(p.numel() for p in self.current_model.parameters() if p.requires_grad)
info += f"🔢 Paramètres totaux: {total_params:,}\n"
info += f"🎯 Paramètres entraînables: {trainable_params:,}\n"
if hasattr(self, 'training_data') and self.training_data:
info += f"\n📊 DONNÉES:\n"
info += f"📈 Exemples: {len(self.training_data):,}\n"
info += f"📝 Colonnes: {list(self.training_data.column_names)}\n"
return info
# Initialisation
trainer = MultimodalTrainer()
# Interface Gradio
def create_interface():
with gr.Blocks(title="🔥 Multimodal Training Hub", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# 🔥 Multimodal Training Hub
### Plateforme d'entraînement de modèles multimodaux optimisée pour Qwen2.5-Omni
🤖 Modèles • 📊 Datasets • 🏋️ Training • 🛠️ Outils
""")
with gr.Tab("🔧 Diagnostic"):
gr.Markdown("### 🩺 Vérification du système et installation")
with gr.Row():
check_deps_btn = gr.Button("🔍 Vérifier dépendances", variant="primary")
install_core_btn = gr.Button("📦 Installer packages critiques", variant="secondary")
install_qwen_btn = gr.Button("🎯 Support Qwen2.5", variant="secondary")
deps_status = gr.Textbox(
label="État des dépendances",
lines=15,
interactive=False
)
with gr.Row():
install_transformers_btn = gr.Button("🤗 Installer Transformers")
install_torch_btn = gr.Button("🔥 Installer PyTorch")
install_datasets_btn = gr.Button("📊 Installer Datasets")
install_status = gr.Textbox(
label="Status d'installation",
lines=8,
interactive=False
)
# Events
check_deps_btn.click(trainer.check_dependencies, outputs=deps_status)
install_transformers_btn.click(
lambda: trainer.install_dependencies(["transformers"]),
outputs=install_status
)
install_torch_btn.click(
lambda: trainer.install_dependencies(["torch"]),
outputs=install_status
)
install_datasets_btn.click(
lambda: trainer.install_dependencies(["datasets"]),
outputs=install_status
)
install_core_btn.click(
lambda: trainer.install_dependencies(["torch", "transformers", "datasets", "accelerate"]),
outputs=install_status
)
install_qwen_btn.click(
lambda: trainer.install_dependencies(["transformers", "qwen"]),
outputs=install_status
)
with gr.Tab("🤖 Modèle"):
with gr.Row():
with gr.Column():
model_input = gr.Textbox(
label="Nom du modèle HuggingFace",
placeholder="kvn420/Tenro_V4.1",
value="kvn420/Tenro_V4.1"
)
model_type = gr.Dropdown(
label="Type de modèle",
choices=["causal", "base"],
value="causal"
)
with gr.Row():
load_model_btn = gr.Button("🔄 Charger le modèle", variant="primary")
diagnose_btn = gr.Button("🔍 Diagnostiquer", variant="secondary")
gr.Markdown("""
💡 **Modèles testés:**
- `kvn420/Tenro_V4.1` (Qwen2.5-Omni)
- `Qwen/Qwen2.5-7B-Instruct`
- `microsoft/DialoGPT-medium`
""")
with gr.Column():
model_status = gr.Textbox(
label="Status du modèle",
interactive=False,
lines=10
)
info_btn = gr.Button("ℹ️ Info modèle")
model_info = gr.Textbox(
label="Informations détaillées",
interactive=False,
lines=8
)
load_model_btn.click(
trainer.load_model,
inputs=[model_input, model_type],
outputs=model_status
)
diagnose_btn.click(
trainer.diagnose_model,
inputs=[model_input],
outputs=model_status
)
info_btn.click(trainer.get_model_info, outputs=model_info)
with gr.Tab("📊 Données"):
with gr.Row():
with gr.Column():
gr.Markdown("### 📝 Dataset individuel")
dataset_input = gr.Textbox(
label="Nom du dataset",
placeholder="wikitext",
value="wikitext"
)
dataset_config = gr.Textbox(
label="Configuration (optionnel)",
placeholder="wikitext-2-raw-v1"
)
dataset_split = gr.Textbox(
label="Split",
value="train"
)
load_dataset_btn = gr.Button("➕ Ajouter dataset", variant="primary")
with gr.Column():
data_status = gr.Textbox(
label="Status des données",
interactive=False,
lines=12
)
def load_dataset_with_config(dataset_name, config_name, split):
if config_name.strip():
full_name = f"{dataset_name}/{config_name}" if "/" not in config_name else config_name
else:
full_name = dataset_name
return trainer.load_single_dataset(full_name, split)
load_dataset_btn.click(
load_dataset_with_config,
inputs=[dataset_input, dataset_config, dataset_split],
outputs=data_status
)
with gr.Tab("🏋️ Entraînement"):
with gr.Row():
with gr.Column():
output_dir = gr.Textbox(
label="Dossier de sortie",
value="./trained_model"
)
with gr.Row():
num_epochs = gr.Number(
label="Époques",
value=3,
minimum=1
)
batch_size = gr.Number(
label="Batch size",
value=4,
minimum=1
)
learning_rate = gr.Number(
label="Learning rate",
value=5e-5,
step=1e-6
)
train_btn = gr.Button("🚀 Simuler entraînement", variant="primary", size="lg")
with gr.Column():
training_status = gr.Textbox(
label="Status d'entraînement",
interactive=False,
lines=15
)
train_btn.click(
trainer.simulate_training,
inputs=[output_dir, num_epochs, learning_rate, batch_size],
outputs=training_status
)
with gr.Tab("📈 Monitoring"):
gr.Markdown("### 📊 Suivi de l'entraînement")
with gr.Row():
with gr.Column():
gr.Markdown("#### 🎯 Métriques")
metrics_display = gr.Textbox(
label="Métriques actuelles",
value="📊 Aucun entraînement en cours",
interactive=False,
lines=8
)
refresh_metrics_btn = gr.Button("🔄 Actualiser métriques")
with gr.Column():
gr.Markdown("#### 📝 Logs")
logs_display = gr.Textbox(
label="Logs d'entraînement",
value="📋 Aucun log disponible",
interactive=False,
lines=8
)
clear_logs_btn = gr.Button("🧹 Nettoyer logs")
def get_dummy_metrics():
return "📊 MÉTRIQUES (SIMULATION):\n\n🔥 Loss: 2.34\n📈 Accuracy: 0.78\n⚡ Speed: 1.2 steps/sec\n💾 Memory: 4.2GB"
def clear_logs():
return "📋 Logs nettoyés"
refresh_metrics_btn.click(get_dummy_metrics, outputs=metrics_display)
clear_logs_btn.click(clear_logs, outputs=logs_display)
with gr.Tab("🛠️ Outils"):
gr.Markdown("### 🔧 Utilitaires et outils avancés")
with gr.Row():
with gr.Column():
gr.Markdown("#### 💾 Gestion des modèles")
model_path = gr.Textbox(
label="Chemin du modèle local",
placeholder="/path/to/model"
)
with gr.Row():
save_model_btn = gr.Button("💾 Sauvegarder modèle")
load_local_btn = gr.Button("📂 Charger local")
gr.Markdown("#### 🧹 Nettoyage")
with gr.Row():
clear_cache_btn = gr.Button("🗑️ Vider cache")
reset_all_btn = gr.Button("🔄 Reset complet", variant="stop")
with gr.Column():
tools_status = gr.Textbox(
label="Status des outils",
interactive=False,
lines=12
)
def save_model_placeholder():
return "💾 Fonction de sauvegarde (implémentation requise)"
def load_local_placeholder():
return "📂 Fonction de chargement local (implémentation requise)"
def clear_cache():
return "🗑️ Cache vidé (simulation)"
def reset_all():
return "🔄 Système réinitialisé (simulation)"
save_model_btn.click(save_model_placeholder, outputs=tools_status)
load_local_btn.click(load_local_placeholder, outputs=tools_status)
clear_cache_btn.click(clear_cache, outputs=tools_status)
reset_all_btn.click(reset_all, outputs=tools_status)
# Footer
gr.Markdown("""
---
🔥 **Multimodal Training Hub** | Optimisé pour Qwen2.5-Omni et modèles multimodaux
💡 **Conseils:**
- Vérifiez les dépendances avant de commencer
- Utilisez le diagnostic pour analyser les modèles
- Les entraînements sont simulés sans GPU adapté
""")
return app
# Lancement de l'application
if __name__ == "__main__":
app = create_interface()
# Configuration du lancement
launch_kwargs = {
"share": False, # Changez à True pour un lien public
"server_name": "0.0.0.0",
"server_port": 7860,
"show_error": True,
"quiet": False
}
# Affichage des informations système au lancement
print("\n" + "="*60)
print("🔥 MULTIMODAL TRAINING HUB")
print("="*60)
print(trainer.check_dependencies())
print("="*60)
print("🚀 Lancement de l'interface...")
try:
app.launch(**launch_kwargs)
except Exception as e:
print(f"❌ Erreur de lancement: {e}")
print("💡 Essayez de changer le port ou les paramètres réseau")