Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,138 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from transformers import (
|
5 |
-
AutoTokenizer, AutoModel, AutoProcessor,
|
6 |
-
AutoModelForCausalLM, TrainingArguments, Trainer,
|
7 |
-
DataCollatorForLanguageModeling
|
8 |
-
)
|
9 |
-
from datasets import Dataset, load_dataset, concatenate_datasets
|
10 |
-
import json
|
11 |
import os
|
12 |
import requests
|
13 |
-
|
14 |
-
import librosa
|
15 |
-
import cv2
|
16 |
-
import numpy as np
|
17 |
-
from pathlib import Path
|
18 |
import logging
|
19 |
from typing import Dict, List, Optional, Union
|
20 |
import time
|
21 |
-
from huggingface_hub import HfApi, list_datasets_in_collection
|
22 |
import tempfile
|
23 |
import shutil
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Configuration du logging
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
class MultimodalTrainer:
|
30 |
def __init__(self):
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
self.current_model = None
|
33 |
self.current_tokenizer = None
|
34 |
self.current_processor = None
|
35 |
self.training_data = []
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def load_model(self, model_name: str, model_type: str = "causal"):
|
39 |
"""Charge un modèle depuis Hugging Face"""
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
logger.info(f"Chargement du modèle: {model_name}")
|
42 |
|
@@ -79,12 +175,19 @@ class MultimodalTrainer:
|
|
79 |
|
80 |
def load_collection_datasets(self, collection_url: str):
|
81 |
"""Charge tous les datasets d'une collection HF"""
|
|
|
|
|
|
|
82 |
try:
|
83 |
# Extrait l'ID de la collection depuis l'URL
|
84 |
collection_id = collection_url.split("/")[-1]
|
85 |
|
86 |
-
#
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
|
89 |
datasets_info = []
|
90 |
loaded_datasets = []
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
+
import json
|
|
|
|
|
|
|
|
|
5 |
import logging
|
6 |
from typing import Dict, List, Optional, Union
|
7 |
import time
|
|
|
8 |
import tempfile
|
9 |
import shutil
|
10 |
|
11 |
+
# Imports conditionnels pour éviter les erreurs
|
12 |
+
try:
|
13 |
+
import numpy as np
|
14 |
+
NUMPY_AVAILABLE = True
|
15 |
+
except ImportError:
|
16 |
+
NUMPY_AVAILABLE = False
|
17 |
+
import array
|
18 |
+
|
19 |
+
try:
|
20 |
+
from pathlib import Path
|
21 |
+
PATHLIB_AVAILABLE = True
|
22 |
+
except ImportError:
|
23 |
+
PATHLIB_AVAILABLE = False
|
24 |
+
|
25 |
+
try:
|
26 |
+
from huggingface_hub import HfApi
|
27 |
+
HF_HUB_AVAILABLE = True
|
28 |
+
except ImportError:
|
29 |
+
HF_HUB_AVAILABLE = False
|
30 |
+
|
31 |
+
try:
|
32 |
+
import numpy as np
|
33 |
+
NUMPY_AVAILABLE = True
|
34 |
+
except ImportError:
|
35 |
+
NUMPY_AVAILABLE = False
|
36 |
+
|
37 |
+
try:
|
38 |
+
import torch
|
39 |
+
import torch.nn as nn
|
40 |
+
TORCH_AVAILABLE = True
|
41 |
+
except ImportError:
|
42 |
+
TORCH_AVAILABLE = False
|
43 |
+
torch = None
|
44 |
+
|
45 |
+
try:
|
46 |
+
from transformers import (
|
47 |
+
AutoTokenizer, AutoModel, AutoProcessor,
|
48 |
+
AutoModelForCausalLM, TrainingArguments, Trainer,
|
49 |
+
DataCollatorForLanguageModeling
|
50 |
+
)
|
51 |
+
TRANSFORMERS_AVAILABLE = True
|
52 |
+
except ImportError:
|
53 |
+
TRANSFORMERS_AVAILABLE = False
|
54 |
+
|
55 |
+
try:
|
56 |
+
from datasets import Dataset, load_dataset, concatenate_datasets
|
57 |
+
DATASETS_AVAILABLE = True
|
58 |
+
except ImportError:
|
59 |
+
DATASETS_AVAILABLE = False
|
60 |
+
|
61 |
+
try:
|
62 |
+
from PIL import Image
|
63 |
+
PIL_AVAILABLE = True
|
64 |
+
except ImportError:
|
65 |
+
PIL_AVAILABLE = False
|
66 |
+
|
67 |
+
try:
|
68 |
+
import librosa
|
69 |
+
LIBROSA_AVAILABLE = True
|
70 |
+
except ImportError:
|
71 |
+
LIBROSA_AVAILABLE = False
|
72 |
+
|
73 |
+
try:
|
74 |
+
import cv2
|
75 |
+
CV2_AVAILABLE = True
|
76 |
+
except ImportError:
|
77 |
+
CV2_AVAILABLE = False
|
78 |
+
|
79 |
# Configuration du logging
|
80 |
logging.basicConfig(level=logging.INFO)
|
81 |
logger = logging.getLogger(__name__)
|
82 |
|
83 |
class MultimodalTrainer:
|
84 |
def __init__(self):
|
85 |
+
# Vérification des dépendances
|
86 |
+
self.dependencies_ok = self.check_dependencies()
|
87 |
+
|
88 |
+
if not TORCH_AVAILABLE:
|
89 |
+
self.device = "cpu"
|
90 |
+
logger.warning("PyTorch non disponible")
|
91 |
+
else:
|
92 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
93 |
+
|
94 |
self.current_model = None
|
95 |
self.current_tokenizer = None
|
96 |
self.current_processor = None
|
97 |
self.training_data = []
|
98 |
+
|
99 |
+
if HF_HUB_AVAILABLE:
|
100 |
+
self.hf_api = HfApi()
|
101 |
+
else:
|
102 |
+
self.hf_api = None
|
103 |
+
|
104 |
+
def check_dependencies(self):
|
105 |
+
"""Vérifie les dépendances installées"""
|
106 |
+
deps = {
|
107 |
+
"PyTorch": TORCH_AVAILABLE,
|
108 |
+
"Transformers": TRANSFORMERS_AVAILABLE,
|
109 |
+
"Datasets": DATASETS_AVAILABLE,
|
110 |
+
"PIL": PIL_AVAILABLE,
|
111 |
+
"Librosa": LIBROSA_AVAILABLE,
|
112 |
+
"OpenCV": CV2_AVAILABLE,
|
113 |
+
"NumPy": NUMPY_AVAILABLE,
|
114 |
+
"HuggingFace Hub": HF_HUB_AVAILABLE
|
115 |
+
}
|
116 |
+
|
117 |
+
status = "📦 État des dépendances:\n"
|
118 |
+
for name, available in deps.items():
|
119 |
+
status += f"{'✅' if available else '❌'} {name}\n"
|
120 |
+
|
121 |
+
if not TORCH_AVAILABLE:
|
122 |
+
status += "\n⚠️ PyTorch requis pour l'entraînement!"
|
123 |
+
if not TRANSFORMERS_AVAILABLE:
|
124 |
+
status += "\n⚠️ Transformers requis pour les modèles!"
|
125 |
+
|
126 |
+
return status
|
127 |
|
128 |
def load_model(self, model_name: str, model_type: str = "causal"):
|
129 |
"""Charge un modèle depuis Hugging Face"""
|
130 |
+
if not TRANSFORMERS_AVAILABLE:
|
131 |
+
return "❌ Transformers non installé!"
|
132 |
+
|
133 |
+
if not TORCH_AVAILABLE:
|
134 |
+
return "❌ PyTorch non installé!"
|
135 |
+
|
136 |
try:
|
137 |
logger.info(f"Chargement du modèle: {model_name}")
|
138 |
|
|
|
175 |
|
176 |
def load_collection_datasets(self, collection_url: str):
|
177 |
"""Charge tous les datasets d'une collection HF"""
|
178 |
+
if not DATASETS_AVAILABLE:
|
179 |
+
return "❌ Datasets non installé!"
|
180 |
+
|
181 |
try:
|
182 |
# Extrait l'ID de la collection depuis l'URL
|
183 |
collection_id = collection_url.split("/")[-1]
|
184 |
|
185 |
+
# Pour l'instant, utilise l'API HF de base
|
186 |
+
try:
|
187 |
+
from huggingface_hub import list_datasets_in_collection
|
188 |
+
collection_items = list_datasets_in_collection(collection_id)
|
189 |
+
except ImportError:
|
190 |
+
return "❌ Fonction collection non disponible, ajoutez manuellement les datasets"
|
191 |
|
192 |
datasets_info = []
|
193 |
loaded_datasets = []
|