Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,7 @@ def check_and_import_dependencies():
|
|
44 |
"""Vérifie et importe toutes les dépendances"""
|
45 |
global numpy, torch, NUMPY_AVAILABLE, TORCH_AVAILABLE, TRANSFORMERS_AVAILABLE
|
46 |
global DATASETS_AVAILABLE, HF_HUB_AVAILABLE, PIL_AVAILABLE, LIBROSA_AVAILABLE, CV2_AVAILABLE
|
47 |
-
global AutoTokenizer, AutoModel, AutoProcessor, AutoModelForCausalLM
|
48 |
global TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
49 |
global Dataset, load_dataset, concatenate_datasets, HfApi, Image, librosa, cv2
|
50 |
|
@@ -67,14 +67,14 @@ def check_and_import_dependencies():
|
|
67 |
# Transformers
|
68 |
try:
|
69 |
from transformers import (
|
70 |
-
AutoTokenizer, AutoModel, AutoProcessor,
|
71 |
AutoModelForCausalLM, TrainingArguments, Trainer,
|
72 |
DataCollatorForLanguageModeling
|
73 |
)
|
74 |
TRANSFORMERS_AVAILABLE = True
|
75 |
except ImportError:
|
76 |
TRANSFORMERS_AVAILABLE = False
|
77 |
-
AutoTokenizer = AutoModel = AutoProcessor = None
|
78 |
AutoModelForCausalLM = TrainingArguments = Trainer = None
|
79 |
DataCollatorForLanguageModeling = None
|
80 |
|
@@ -144,16 +144,17 @@ class MultimodalTrainer:
|
|
144 |
"""Installe les dépendances manquantes"""
|
145 |
installation_results = []
|
146 |
|
147 |
-
# Mapping des packages
|
148 |
package_mapping = {
|
149 |
-
"torch": "torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
|
150 |
-
"transformers": "transformers",
|
151 |
-
"datasets": "datasets",
|
152 |
-
"accelerate": "accelerate",
|
153 |
-
"pillow": "pillow",
|
154 |
-
"librosa": "librosa",
|
155 |
-
"opencv": "opencv-python",
|
156 |
-
"huggingface_hub": "huggingface_hub"
|
|
|
157 |
}
|
158 |
|
159 |
for package in packages_to_install:
|
@@ -167,7 +168,7 @@ class MultimodalTrainer:
|
|
167 |
try:
|
168 |
subprocess.check_call([
|
169 |
sys.executable, "-m", "pip", "install",
|
170 |
-
"torch", "torchvision", "torchaudio",
|
171 |
"--index-url", "https://download.pytorch.org/whl/cpu",
|
172 |
"--quiet"
|
173 |
])
|
@@ -230,145 +231,222 @@ class MultimodalTrainer:
|
|
230 |
status += f"🚀 GPU: {torch.cuda.get_device_name()}\n"
|
231 |
status += f"🔋 VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB\n"
|
232 |
|
|
|
|
|
|
|
|
|
|
|
233 |
return status
|
234 |
|
235 |
-
def
|
236 |
-
"""
|
237 |
if not TRANSFORMERS_AVAILABLE:
|
238 |
-
return "❌ Transformers non installé! Utilisez l'outil d'installation."
|
239 |
|
240 |
if not TORCH_AVAILABLE or not torch:
|
241 |
-
return "❌ PyTorch non installé! Utilisez l'outil d'installation."
|
242 |
|
243 |
-
if not model_name.strip():
|
244 |
-
return "❌ Veuillez entrer un nom de modèle"
|
245 |
-
|
246 |
try:
|
247 |
-
logger.info(f"Chargement du modèle: {model_name}")
|
248 |
|
249 |
-
#
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
252 |
|
253 |
-
#
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
model_name,
|
258 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
259 |
device_map="auto" if torch.cuda.is_available() else None,
|
260 |
-
trust_remote_code=True
|
|
|
261 |
)
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
# Stratégie 2: AutoModel générique
|
267 |
-
if not model_loaded:
|
268 |
-
try:
|
269 |
-
self.current_model = AutoModel.from_pretrained(
|
270 |
model_name,
|
|
|
271 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
272 |
device_map="auto" if torch.cuda.is_available() else None,
|
273 |
-
trust_remote_code=True
|
|
|
|
|
274 |
)
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
# Stratégie 3: Détection automatique basée sur le nom
|
280 |
-
if not model_loaded and any(x in model_name.lower() for x in ['llama', 'mistral', 'qwen', 'phi']):
|
281 |
-
try:
|
282 |
-
# Pour les modèles de type LLaMA/Mistral/Qwen
|
283 |
-
from transformers import LlamaForCausalLM, MistralForCausalLM
|
284 |
-
|
285 |
-
if 'llama' in model_name.lower():
|
286 |
-
self.current_model = LlamaForCausalLM.from_pretrained(
|
287 |
-
model_name,
|
288 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
289 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
290 |
-
trust_remote_code=True
|
291 |
-
)
|
292 |
-
elif 'mistral' in model_name.lower():
|
293 |
-
self.current_model = MistralForCausalLM.from_pretrained(
|
294 |
-
model_name,
|
295 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
296 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
297 |
-
trust_remote_code=True
|
298 |
-
)
|
299 |
-
model_loaded = True
|
300 |
-
except Exception as e:
|
301 |
-
error_messages.append(f"Modèle spécifique: {str(e)}")
|
302 |
-
|
303 |
-
# Stratégie 4: Configuration manuelle
|
304 |
-
if not model_loaded:
|
305 |
-
try:
|
306 |
-
# Télécharge la configuration d'abord
|
307 |
-
from transformers import AutoConfig
|
308 |
-
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
309 |
-
|
310 |
-
# Force le model_type si manquant
|
311 |
-
if not hasattr(config, 'model_type') or config.model_type is None:
|
312 |
-
# Détection basée sur l'architecture
|
313 |
-
if hasattr(config, 'architectures') and config.architectures:
|
314 |
-
arch = config.architectures[0].lower()
|
315 |
-
if 'llama' in arch:
|
316 |
-
config.model_type = 'llama'
|
317 |
-
elif 'mistral' in arch:
|
318 |
-
config.model_type = 'mistral'
|
319 |
-
elif 'qwen' in arch:
|
320 |
-
config.model_type = 'qwen2'
|
321 |
-
elif 'phi' in arch:
|
322 |
-
config.model_type = 'phi'
|
323 |
-
else:
|
324 |
-
config.model_type = 'llama' # Par défaut
|
325 |
-
|
326 |
-
self.current_model = AutoModelForCausalLM.from_pretrained(
|
327 |
model_name,
|
328 |
-
config=config,
|
329 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
330 |
device_map="auto" if torch.cuda.is_available() else None,
|
331 |
-
trust_remote_code=True
|
|
|
332 |
)
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
except Exception as e:
|
335 |
-
|
|
|
|
|
336 |
|
337 |
-
if
|
338 |
-
return f"❌
|
339 |
|
340 |
-
#
|
|
|
341 |
try:
|
342 |
-
|
343 |
-
|
344 |
-
)
|
345 |
-
if self.current_tokenizer.pad_token is None:
|
346 |
-
self.current_tokenizer.pad_token = self.current_tokenizer.eos_token
|
347 |
except Exception as e:
|
348 |
-
logger.warning(f"
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
try:
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
except Exception as e:
|
364 |
-
|
365 |
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
except Exception as e:
|
369 |
-
|
370 |
-
logger.error(error_msg)
|
371 |
-
return error_msg
|
372 |
|
373 |
def load_single_dataset(self, dataset_name: str, split: str = "train"):
|
374 |
"""Charge un dataset individuel"""
|
@@ -437,56 +515,8 @@ class MultimodalTrainer:
|
|
437 |
info += f"\n📊 DONNÉES:\n"
|
438 |
info += f"📈 Exemples: {len(self.training_data):,}\n"
|
439 |
info += f"📝 Colonnes: {list(self.training_data.column_names)}\n"
|
440 |
-
|
441 |
-
def diagnose_model(self, model_name: str):
|
442 |
-
"""Diagnostique un modèle avant chargement"""
|
443 |
-
if not model_name.strip():
|
444 |
-
return "❌ Veuillez entrer un nom de modèle"
|
445 |
-
|
446 |
-
try:
|
447 |
-
from transformers import AutoConfig
|
448 |
-
import requests
|
449 |
-
|
450 |
-
result = f"🔍 DIAGNOSTIC DU MODÈLE: {model_name}\n\n"
|
451 |
|
452 |
-
|
453 |
-
try:
|
454 |
-
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
455 |
-
result += "✅ Modèle accessible\n"
|
456 |
-
|
457 |
-
# Informations sur la configuration
|
458 |
-
result += f"📋 Type de modèle: {getattr(config, 'model_type', 'Non défini')}\n"
|
459 |
-
result += f"🏗️ Architecture: {getattr(config, 'architectures', ['Inconnue'])}\n"
|
460 |
-
result += f"📚 Vocabulaire: {getattr(config, 'vocab_size', 'Inconnu')}\n"
|
461 |
-
result += f"🧠 Couches cachées: {getattr(config, 'hidden_size', 'Inconnu')}\n"
|
462 |
-
result += f"🔢 Nombre de couches: {getattr(config, 'num_hidden_layers', 'Inconnu')}\n"
|
463 |
-
|
464 |
-
# Recommandations
|
465 |
-
if not hasattr(config, 'model_type') or config.model_type is None:
|
466 |
-
result += "\n⚠️ PROBLÈME: model_type manquant\n"
|
467 |
-
result += "💡 SOLUTION: Le chargeur essaiera de détecter automatiquement\n"
|
468 |
-
|
469 |
-
if hasattr(config, 'architectures') and config.architectures:
|
470 |
-
arch = config.architectures[0].lower()
|
471 |
-
if 'llama' in arch:
|
472 |
-
result += "🎯 Type détecté: LLaMA\n"
|
473 |
-
elif 'mistral' in arch:
|
474 |
-
result += "🎯 Type détecté: Mistral\n"
|
475 |
-
elif 'qwen' in arch:
|
476 |
-
result += "🎯 Type détecté: Qwen\n"
|
477 |
-
elif 'phi' in arch:
|
478 |
-
result += "🎯 Type détecté: Phi\n"
|
479 |
-
|
480 |
-
result += "\n✅ Chargement possible avec les stratégies multiples"
|
481 |
-
|
482 |
-
except Exception as e:
|
483 |
-
result += f"❌ Erreur d'accès: {str(e)}\n"
|
484 |
-
result += "💡 Vérifiez que le modèle existe et est public\n"
|
485 |
-
|
486 |
-
return result
|
487 |
-
|
488 |
-
except Exception as e:
|
489 |
-
return f"❌ Erreur diagnostic: {str(e)}"
|
490 |
|
491 |
# Initialisation
|
492 |
trainer = MultimodalTrainer()
|
@@ -497,17 +527,18 @@ def create_interface():
|
|
497 |
|
498 |
gr.Markdown("""
|
499 |
# 🔥 Multimodal Training Hub
|
500 |
-
### Plateforme d'entraînement de modèles multimodaux
|
501 |
|
502 |
🤖 Modèles • 📊 Datasets • 🏋️ Training • 🛠️ Outils
|
503 |
""")
|
504 |
|
505 |
with gr.Tab("🔧 Diagnostic"):
|
506 |
-
gr.Markdown("### 🩺 Vérification du système")
|
507 |
|
508 |
with gr.Row():
|
509 |
check_deps_btn = gr.Button("🔍 Vérifier dépendances", variant="primary")
|
510 |
install_core_btn = gr.Button("📦 Installer packages critiques", variant="secondary")
|
|
|
511 |
|
512 |
deps_status = gr.Textbox(
|
513 |
label="État des dépendances",
|
@@ -545,28 +576,41 @@ def create_interface():
|
|
545 |
lambda: trainer.install_dependencies(["torch", "transformers", "datasets", "accelerate"]),
|
546 |
outputs=install_status
|
547 |
)
|
|
|
|
|
|
|
|
|
548 |
|
549 |
with gr.Tab("🤖 Modèle"):
|
550 |
with gr.Row():
|
551 |
with gr.Column():
|
552 |
model_input = gr.Textbox(
|
553 |
label="Nom du modèle HuggingFace",
|
554 |
-
placeholder="
|
555 |
-
value="
|
556 |
)
|
557 |
model_type = gr.Dropdown(
|
558 |
label="Type de modèle",
|
559 |
choices=["causal", "base"],
|
560 |
value="causal"
|
561 |
)
|
562 |
-
|
563 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
with gr.Column():
|
566 |
model_status = gr.Textbox(
|
567 |
label="Status du modèle",
|
568 |
interactive=False,
|
569 |
-
lines=
|
570 |
)
|
571 |
|
572 |
info_btn = gr.Button("ℹ️ Info modèle")
|
@@ -659,23 +703,4 @@ def create_interface():
|
|
659 |
|
660 |
with gr.Column():
|
661 |
training_status = gr.Textbox(
|
662 |
-
label="Status
|
663 |
-
interactive=False,
|
664 |
-
lines=12
|
665 |
-
)
|
666 |
-
|
667 |
-
train_btn.click(
|
668 |
-
trainer.simulate_training,
|
669 |
-
inputs=[output_dir, num_epochs, learning_rate, batch_size],
|
670 |
-
outputs=training_status
|
671 |
-
)
|
672 |
-
|
673 |
-
# Auto-check au démarrage
|
674 |
-
app.load(trainer.check_dependencies, outputs=deps_status)
|
675 |
-
|
676 |
-
return app
|
677 |
-
|
678 |
-
# Lancement
|
679 |
-
if __name__ == "__main__":
|
680 |
-
app = create_interface()
|
681 |
-
app.launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
44 |
"""Vérifie et importe toutes les dépendances"""
|
45 |
global numpy, torch, NUMPY_AVAILABLE, TORCH_AVAILABLE, TRANSFORMERS_AVAILABLE
|
46 |
global DATASETS_AVAILABLE, HF_HUB_AVAILABLE, PIL_AVAILABLE, LIBROSA_AVAILABLE, CV2_AVAILABLE
|
47 |
+
global AutoTokenizer, AutoModel, AutoProcessor, AutoModelForCausalLM, AutoConfig
|
48 |
global TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
49 |
global Dataset, load_dataset, concatenate_datasets, HfApi, Image, librosa, cv2
|
50 |
|
|
|
67 |
# Transformers
|
68 |
try:
|
69 |
from transformers import (
|
70 |
+
AutoTokenizer, AutoModel, AutoProcessor, AutoConfig,
|
71 |
AutoModelForCausalLM, TrainingArguments, Trainer,
|
72 |
DataCollatorForLanguageModeling
|
73 |
)
|
74 |
TRANSFORMERS_AVAILABLE = True
|
75 |
except ImportError:
|
76 |
TRANSFORMERS_AVAILABLE = False
|
77 |
+
AutoTokenizer = AutoModel = AutoProcessor = AutoConfig = None
|
78 |
AutoModelForCausalLM = TrainingArguments = Trainer = None
|
79 |
DataCollatorForLanguageModeling = None
|
80 |
|
|
|
144 |
"""Installe les dépendances manquantes"""
|
145 |
installation_results = []
|
146 |
|
147 |
+
# Mapping des packages avec versions spécifiques
|
148 |
package_mapping = {
|
149 |
+
"torch": "torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cpu",
|
150 |
+
"transformers": "transformers>=4.46.2",
|
151 |
+
"datasets": "datasets>=2.21.0",
|
152 |
+
"accelerate": "accelerate>=1.1.0",
|
153 |
+
"pillow": "pillow>=10.1.0",
|
154 |
+
"librosa": "librosa>=0.10.1",
|
155 |
+
"opencv": "opencv-python-headless>=4.8.1.78",
|
156 |
+
"huggingface_hub": "huggingface_hub>=0.26.0",
|
157 |
+
"qwen": "qwen-vl-utils>=0.0.8"
|
158 |
}
|
159 |
|
160 |
for package in packages_to_install:
|
|
|
168 |
try:
|
169 |
subprocess.check_call([
|
170 |
sys.executable, "-m", "pip", "install",
|
171 |
+
"torch==2.1.0", "torchvision==0.16.0", "torchaudio==2.1.0",
|
172 |
"--index-url", "https://download.pytorch.org/whl/cpu",
|
173 |
"--quiet"
|
174 |
])
|
|
|
231 |
status += f"🚀 GPU: {torch.cuda.get_device_name()}\n"
|
232 |
status += f"🔋 VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB\n"
|
233 |
|
234 |
+
# Versions spécifiques
|
235 |
+
if TRANSFORMERS_AVAILABLE:
|
236 |
+
import transformers
|
237 |
+
status += f"🤗 Transformers: {transformers.__version__}\n"
|
238 |
+
|
239 |
return status
|
240 |
|
241 |
+
def load_model_safe(self, model_name: str):
|
242 |
+
"""Chargement sécurisé du modèle avec gestion d'erreurs avancée"""
|
243 |
if not TRANSFORMERS_AVAILABLE:
|
244 |
+
return "❌ Transformers non installé! Utilisez l'outil d'installation.", None, None
|
245 |
|
246 |
if not TORCH_AVAILABLE or not torch:
|
247 |
+
return "❌ PyTorch non installé! Utilisez l'outil d'installation.", None, None
|
248 |
|
|
|
|
|
|
|
249 |
try:
|
250 |
+
logger.info(f"Chargement sécurisé du modèle: {model_name}")
|
251 |
|
252 |
+
# Étape 1: Vérification de la configuration
|
253 |
+
try:
|
254 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
255 |
+
logger.info(f"Configuration chargée: {config.model_type}")
|
256 |
+
except Exception as e:
|
257 |
+
return f"❌ Erreur configuration: {str(e)}", None, None
|
258 |
|
259 |
+
# Étape 2: Chargement du tokenizer
|
260 |
+
tokenizer = None
|
261 |
+
try:
|
262 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
263 |
+
model_name,
|
264 |
+
trust_remote_code=True,
|
265 |
+
use_fast=False
|
266 |
+
)
|
267 |
+
if tokenizer.pad_token is None:
|
268 |
+
tokenizer.pad_token = tokenizer.eos_token
|
269 |
+
logger.info("Tokenizer chargé avec succès")
|
270 |
+
except Exception as e:
|
271 |
+
logger.warning(f"Tokenizer non trouvé: {e}")
|
272 |
+
return f"❌ Erreur tokenizer: {str(e)}", None, None
|
273 |
+
|
274 |
+
# Étape 3: Chargement du modèle avec stratégies multiples
|
275 |
+
model = None
|
276 |
+
loading_strategies = [
|
277 |
+
{
|
278 |
+
"name": "AutoModelForCausalLM standard",
|
279 |
+
"loader": lambda: AutoModelForCausalLM.from_pretrained(
|
280 |
model_name,
|
281 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
282 |
device_map="auto" if torch.cuda.is_available() else None,
|
283 |
+
trust_remote_code=True,
|
284 |
+
low_cpu_mem_usage=True
|
285 |
)
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"name": "AutoModelForCausalLM avec config explicite",
|
289 |
+
"loader": lambda: AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
290 |
model_name,
|
291 |
+
config=config,
|
292 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
293 |
device_map="auto" if torch.cuda.is_available() else None,
|
294 |
+
trust_remote_code=True,
|
295 |
+
low_cpu_mem_usage=True,
|
296 |
+
attn_implementation="eager"
|
297 |
)
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"name": "AutoModel générique",
|
301 |
+
"loader": lambda: AutoModel.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
model_name,
|
|
|
303 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
304 |
device_map="auto" if torch.cuda.is_available() else None,
|
305 |
+
trust_remote_code=True,
|
306 |
+
low_cpu_mem_usage=True
|
307 |
)
|
308 |
+
}
|
309 |
+
]
|
310 |
+
|
311 |
+
last_error = None
|
312 |
+
for strategy in loading_strategies:
|
313 |
+
try:
|
314 |
+
logger.info(f"Tentative: {strategy['name']}")
|
315 |
+
model = strategy["loader"]()
|
316 |
+
logger.info(f"✅ Succès avec: {strategy['name']}")
|
317 |
+
break
|
318 |
except Exception as e:
|
319 |
+
last_error = str(e)
|
320 |
+
logger.warning(f"❌ Échec {strategy['name']}: {e}")
|
321 |
+
continue
|
322 |
|
323 |
+
if model is None:
|
324 |
+
return f"❌ Toutes les stratégies ont échoué. Dernière erreur: {last_error}", None, None
|
325 |
|
326 |
+
# Étape 4: Chargement du processor (optionnel)
|
327 |
+
processor = None
|
328 |
try:
|
329 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
330 |
+
logger.info("Processor chargé avec succès")
|
|
|
|
|
|
|
331 |
except Exception as e:
|
332 |
+
logger.warning(f"Processor non disponible: {e}")
|
333 |
+
|
334 |
+
return "✅ Modèle chargé avec succès!", model, tokenizer, processor
|
335 |
+
|
336 |
+
except Exception as e:
|
337 |
+
error_msg = f"❌ Erreur critique: {str(e)}"
|
338 |
+
logger.error(error_msg)
|
339 |
+
return error_msg, None, None
|
340 |
+
|
341 |
+
def load_model(self, model_name: str, model_type: str = "causal"):
|
342 |
+
"""Charge un modèle depuis Hugging Face avec gestion d'erreurs améliorée"""
|
343 |
+
if not model_name.strip():
|
344 |
+
return "❌ Veuillez entrer un nom de modèle"
|
345 |
+
|
346 |
+
# Utilise la méthode sécurisée
|
347 |
+
result = self.load_model_safe(model_name)
|
348 |
+
|
349 |
+
if len(result) == 4: # Succès
|
350 |
+
message, model, tokenizer, processor = result
|
351 |
+
self.current_model = model
|
352 |
+
self.current_tokenizer = tokenizer
|
353 |
+
self.current_processor = processor
|
354 |
+
|
355 |
+
# Informations détaillées
|
356 |
+
info = f"{message}\n"
|
357 |
+
info += f"🏷️ Type: {type(model).__name__}\n"
|
358 |
+
if hasattr(model, 'config'):
|
359 |
+
info += f"🏗️ Architecture: {getattr(model.config, 'architectures', ['Inconnue'])[0] if hasattr(model.config, 'architectures') else 'Inconnue'}\n"
|
360 |
+
info += f"📋 Model type: {getattr(model.config, 'model_type', 'Non défini')}\n"
|
361 |
+
|
362 |
+
if TORCH_AVAILABLE and torch:
|
363 |
+
info += f"💾 Device: {next(model.parameters()).device}\n"
|
364 |
+
total_params = sum(p.numel() for p in model.parameters())
|
365 |
+
info += f"🔢 Paramètres: {total_params:,}\n"
|
366 |
+
|
367 |
+
return info
|
368 |
+
else:
|
369 |
+
# Erreur
|
370 |
+
return result[0]
|
371 |
+
|
372 |
+
def diagnose_model(self, model_name: str):
|
373 |
+
"""Diagnostique avancé d'un modèle"""
|
374 |
+
if not model_name.strip():
|
375 |
+
return "❌ Veuillez entrer un nom de modèle"
|
376 |
+
|
377 |
+
try:
|
378 |
+
result = f"🔍 DIAGNOSTIC APPROFONDI: {model_name}\n\n"
|
379 |
+
|
380 |
+
# Vérification de l'existence
|
381 |
try:
|
382 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
383 |
+
result += "✅ Modèle accessible sur Hugging Face\n\n"
|
384 |
+
|
385 |
+
# Analyse de la configuration
|
386 |
+
result += "📋 CONFIGURATION:\n"
|
387 |
+
result += f"🏷️ Model type: {getattr(config, 'model_type', '❌ NON DÉFINI')}\n"
|
388 |
+
result += f"🏗️ Architectures: {getattr(config, 'architectures', ['❌ NON DÉFINI'])}\n"
|
389 |
+
result += f"📚 Vocab size: {getattr(config, 'vocab_size', 'Inconnu'):,}\n"
|
390 |
+
result += f"🧠 Hidden size: {getattr(config, 'hidden_size', 'Inconnu')}\n"
|
391 |
+
result += f"🔢 Layers: {getattr(config, 'num_hidden_layers', 'Inconnu')}\n"
|
392 |
+
result += f"🎯 Attention heads: {getattr(config, 'num_attention_heads', 'Inconnu')}\n"
|
393 |
+
|
394 |
+
# Vérification des problèmes courants
|
395 |
+
result += "\n🔧 ANALYSE DES PROBLÈMES:\n"
|
396 |
+
|
397 |
+
if not hasattr(config, 'model_type') or config.model_type is None:
|
398 |
+
result += "⚠️ PROBLÈME: model_type manquant\n"
|
399 |
+
if hasattr(config, 'architectures') and config.architectures:
|
400 |
+
arch = config.architectures[0].lower()
|
401 |
+
suggested_type = None
|
402 |
+
if 'qwen' in arch:
|
403 |
+
suggested_type = 'qwen2' if 'qwen2' in arch else 'qwen'
|
404 |
+
elif 'llama' in arch:
|
405 |
+
suggested_type = 'llama'
|
406 |
+
elif 'mistral' in arch:
|
407 |
+
suggested_type = 'mistral'
|
408 |
+
elif 'phi' in arch:
|
409 |
+
suggested_type = 'phi'
|
410 |
+
|
411 |
+
if suggested_type:
|
412 |
+
result += f"💡 Type suggéré: {suggested_type}\n"
|
413 |
+
else:
|
414 |
+
result += f"✅ Model type défini: {config.model_type}\n"
|
415 |
+
|
416 |
+
# Vérification de la compatibilité avec Transformers
|
417 |
+
if hasattr(config, 'architectures') and config.architectures:
|
418 |
+
arch = config.architectures[0]
|
419 |
+
if 'Qwen2_5OmniForCausalLM' in arch:
|
420 |
+
result += "⚠️ Architecture Qwen2.5-Omni détectée\n"
|
421 |
+
result += "💡 Nécessite Transformers >= 4.45.0\n"
|
422 |
+
if TRANSFORMERS_AVAILABLE:
|
423 |
+
import transformers
|
424 |
+
current_version = transformers.__version__
|
425 |
+
result += f"📦 Version actuelle: {current_version}\n"
|
426 |
+
|
427 |
+
# Stratégies de chargement recommandées
|
428 |
+
result += "\n🎯 STRATÉGIES DE CHARGEMENT:\n"
|
429 |
+
result += "1️⃣ AutoModelForCausalLM avec trust_remote_code=True\n"
|
430 |
+
result += "2️⃣ Configuration explicite si model_type manquant\n"
|
431 |
+
result += "3️⃣ Fallback vers AutoModel générique\n"
|
432 |
+
|
433 |
+
result += "\n✅ Diagnostic terminé - Chargement possible avec adaptations"
|
434 |
+
|
435 |
except Exception as e:
|
436 |
+
result += f"❌ Erreur d'accès: {str(e)}\n"
|
437 |
|
438 |
+
# Suggestions basées sur l'erreur
|
439 |
+
if "404" in str(e):
|
440 |
+
result += "💡 Le modèle n'existe pas ou n'est pas public\n"
|
441 |
+
elif "token" in str(e).lower():
|
442 |
+
result += "💡 Un token d'authentification pourrait être nécessaire\n"
|
443 |
+
else:
|
444 |
+
result += "💡 Vérifiez le nom du modèle et votre connexion\n"
|
445 |
+
|
446 |
+
return result
|
447 |
|
448 |
except Exception as e:
|
449 |
+
return f"❌ Erreur diagnostic: {str(e)}"
|
|
|
|
|
450 |
|
451 |
def load_single_dataset(self, dataset_name: str, split: str = "train"):
|
452 |
"""Charge un dataset individuel"""
|
|
|
515 |
info += f"\n📊 DONNÉES:\n"
|
516 |
info += f"📈 Exemples: {len(self.training_data):,}\n"
|
517 |
info += f"📝 Colonnes: {list(self.training_data.column_names)}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
+
return info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
# Initialisation
|
522 |
trainer = MultimodalTrainer()
|
|
|
527 |
|
528 |
gr.Markdown("""
|
529 |
# 🔥 Multimodal Training Hub
|
530 |
+
### Plateforme d'entraînement de modèles multimodaux optimisée pour Qwen2.5-Omni
|
531 |
|
532 |
🤖 Modèles • 📊 Datasets • 🏋️ Training • 🛠️ Outils
|
533 |
""")
|
534 |
|
535 |
with gr.Tab("🔧 Diagnostic"):
|
536 |
+
gr.Markdown("### 🩺 Vérification du système et installation")
|
537 |
|
538 |
with gr.Row():
|
539 |
check_deps_btn = gr.Button("🔍 Vérifier dépendances", variant="primary")
|
540 |
install_core_btn = gr.Button("📦 Installer packages critiques", variant="secondary")
|
541 |
+
install_qwen_btn = gr.Button("🎯 Support Qwen2.5", variant="secondary")
|
542 |
|
543 |
deps_status = gr.Textbox(
|
544 |
label="État des dépendances",
|
|
|
576 |
lambda: trainer.install_dependencies(["torch", "transformers", "datasets", "accelerate"]),
|
577 |
outputs=install_status
|
578 |
)
|
579 |
+
install_qwen_btn.click(
|
580 |
+
lambda: trainer.install_dependencies(["transformers", "qwen"]),
|
581 |
+
outputs=install_status
|
582 |
+
)
|
583 |
|
584 |
with gr.Tab("🤖 Modèle"):
|
585 |
with gr.Row():
|
586 |
with gr.Column():
|
587 |
model_input = gr.Textbox(
|
588 |
label="Nom du modèle HuggingFace",
|
589 |
+
placeholder="kvn420/Tenro_V4.1",
|
590 |
+
value="kvn420/Tenro_V4.1"
|
591 |
)
|
592 |
model_type = gr.Dropdown(
|
593 |
label="Type de modèle",
|
594 |
choices=["causal", "base"],
|
595 |
value="causal"
|
596 |
)
|
597 |
+
|
598 |
+
with gr.Row():
|
599 |
+
load_model_btn = gr.Button("🔄 Charger le modèle", variant="primary")
|
600 |
+
diagnose_btn = gr.Button("🔍 Diagnostiquer", variant="secondary")
|
601 |
+
|
602 |
+
gr.Markdown("""
|
603 |
+
💡 **Modèles testés:**
|
604 |
+
- `kvn420/Tenro_V4.1` (Qwen2.5-Omni)
|
605 |
+
- `Qwen/Qwen2.5-7B-Instruct`
|
606 |
+
- `microsoft/DialoGPT-medium`
|
607 |
+
""")
|
608 |
|
609 |
with gr.Column():
|
610 |
model_status = gr.Textbox(
|
611 |
label="Status du modèle",
|
612 |
interactive=False,
|
613 |
+
lines=10
|
614 |
)
|
615 |
|
616 |
info_btn = gr.Button("ℹ️ Info modèle")
|
|
|
703 |
|
704 |
with gr.Column():
|
705 |
training_status = gr.Textbox(
|
706 |
+
label="Status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|