Update app.py
Browse files
app.py
CHANGED
@@ -246,20 +246,96 @@ class MultimodalTrainer:
|
|
246 |
try:
|
247 |
logger.info(f"Chargement du modèle: {model_name}")
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
# Charge le tokenizer
|
265 |
try:
|
@@ -270,6 +346,14 @@ class MultimodalTrainer:
|
|
270 |
self.current_tokenizer.pad_token = self.current_tokenizer.eos_token
|
271 |
except Exception as e:
|
272 |
logger.warning(f"Tokenizer non trouvé: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
# Charge le processor
|
275 |
try:
|
@@ -279,7 +363,7 @@ class MultimodalTrainer:
|
|
279 |
except Exception as e:
|
280 |
logger.warning(f"Processor non trouvé: {e}")
|
281 |
|
282 |
-
return f"✅ Modèle {model_name} chargé avec succès!\nType: {type(self.current_model).__name__}"
|
283 |
|
284 |
except Exception as e:
|
285 |
error_msg = f"❌ Erreur lors du chargement: {str(e)}"
|
@@ -354,7 +438,55 @@ class MultimodalTrainer:
|
|
354 |
info += f"📈 Exemples: {len(self.training_data):,}\n"
|
355 |
info += f"📝 Colonnes: {list(self.training_data.column_names)}\n"
|
356 |
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
# Initialisation
|
360 |
trainer = MultimodalTrainer()
|
@@ -428,6 +560,7 @@ def create_interface():
|
|
428 |
value="causal"
|
429 |
)
|
430 |
load_model_btn = gr.Button("🔄 Charger le modèle", variant="primary")
|
|
|
431 |
|
432 |
with gr.Column():
|
433 |
model_status = gr.Textbox(
|
@@ -449,6 +582,12 @@ def create_interface():
|
|
449 |
outputs=model_status
|
450 |
)
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
info_btn.click(trainer.get_model_info, outputs=model_info)
|
453 |
|
454 |
with gr.Tab("📊 Données"):
|
|
|
246 |
try:
|
247 |
logger.info(f"Chargement du modèle: {model_name}")
|
248 |
|
249 |
+
# Stratégies de chargement multiples
|
250 |
+
model_loaded = False
|
251 |
+
error_messages = []
|
252 |
+
|
253 |
+
# Stratégie 1: AutoModelForCausalLM avec trust_remote_code
|
254 |
+
if model_type == "causal" and not model_loaded:
|
255 |
+
try:
|
256 |
+
self.current_model = AutoModelForCausalLM.from_pretrained(
|
257 |
+
model_name,
|
258 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
259 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
260 |
+
trust_remote_code=True
|
261 |
+
)
|
262 |
+
model_loaded = True
|
263 |
+
except Exception as e:
|
264 |
+
error_messages.append(f"AutoModelForCausalLM: {str(e)}")
|
265 |
+
|
266 |
+
# Stratégie 2: AutoModel générique
|
267 |
+
if not model_loaded:
|
268 |
+
try:
|
269 |
+
self.current_model = AutoModel.from_pretrained(
|
270 |
+
model_name,
|
271 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
272 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
273 |
+
trust_remote_code=True
|
274 |
+
)
|
275 |
+
model_loaded = True
|
276 |
+
except Exception as e:
|
277 |
+
error_messages.append(f"AutoModel: {str(e)}")
|
278 |
+
|
279 |
+
# Stratégie 3: Détection automatique basée sur le nom
|
280 |
+
if not model_loaded and any(x in model_name.lower() for x in ['llama', 'mistral', 'qwen', 'phi']):
|
281 |
+
try:
|
282 |
+
# Pour les modèles de type LLaMA/Mistral/Qwen
|
283 |
+
from transformers import LlamaForCausalLM, MistralForCausalLM
|
284 |
+
|
285 |
+
if 'llama' in model_name.lower():
|
286 |
+
self.current_model = LlamaForCausalLM.from_pretrained(
|
287 |
+
model_name,
|
288 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
289 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
290 |
+
trust_remote_code=True
|
291 |
+
)
|
292 |
+
elif 'mistral' in model_name.lower():
|
293 |
+
self.current_model = MistralForCausalLM.from_pretrained(
|
294 |
+
model_name,
|
295 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
296 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
297 |
+
trust_remote_code=True
|
298 |
+
)
|
299 |
+
model_loaded = True
|
300 |
+
except Exception as e:
|
301 |
+
error_messages.append(f"Modèle spécifique: {str(e)}")
|
302 |
+
|
303 |
+
# Stratégie 4: Configuration manuelle
|
304 |
+
if not model_loaded:
|
305 |
+
try:
|
306 |
+
# Télécharge la configuration d'abord
|
307 |
+
from transformers import AutoConfig
|
308 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
309 |
+
|
310 |
+
# Force le model_type si manquant
|
311 |
+
if not hasattr(config, 'model_type') or config.model_type is None:
|
312 |
+
# Détection basée sur l'architecture
|
313 |
+
if hasattr(config, 'architectures') and config.architectures:
|
314 |
+
arch = config.architectures[0].lower()
|
315 |
+
if 'llama' in arch:
|
316 |
+
config.model_type = 'llama'
|
317 |
+
elif 'mistral' in arch:
|
318 |
+
config.model_type = 'mistral'
|
319 |
+
elif 'qwen' in arch:
|
320 |
+
config.model_type = 'qwen2'
|
321 |
+
elif 'phi' in arch:
|
322 |
+
config.model_type = 'phi'
|
323 |
+
else:
|
324 |
+
config.model_type = 'llama' # Par défaut
|
325 |
+
|
326 |
+
self.current_model = AutoModelForCausalLM.from_pretrained(
|
327 |
+
model_name,
|
328 |
+
config=config,
|
329 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
330 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
331 |
+
trust_remote_code=True
|
332 |
+
)
|
333 |
+
model_loaded = True
|
334 |
+
except Exception as e:
|
335 |
+
error_messages.append(f"Configuration manuelle: {str(e)}")
|
336 |
+
|
337 |
+
if not model_loaded:
|
338 |
+
return f"❌ Impossible de charger le modèle. Erreurs:\n" + "\n".join(error_messages)
|
339 |
|
340 |
# Charge le tokenizer
|
341 |
try:
|
|
|
346 |
self.current_tokenizer.pad_token = self.current_tokenizer.eos_token
|
347 |
except Exception as e:
|
348 |
logger.warning(f"Tokenizer non trouvé: {e}")
|
349 |
+
try:
|
350 |
+
# Essaye avec un tokenizer générique
|
351 |
+
from transformers import LlamaTokenizer
|
352 |
+
self.current_tokenizer = LlamaTokenizer.from_pretrained(
|
353 |
+
model_name, trust_remote_code=True
|
354 |
+
)
|
355 |
+
except:
|
356 |
+
logger.warning("Aucun tokenizer trouvé")
|
357 |
|
358 |
# Charge le processor
|
359 |
try:
|
|
|
363 |
except Exception as e:
|
364 |
logger.warning(f"Processor non trouvé: {e}")
|
365 |
|
366 |
+
return f"✅ Modèle {model_name} chargé avec succès!\nType: {type(self.current_model).__name__}\nArchitecture: {getattr(self.current_model.config, 'architectures', ['Inconnue'])[0] if hasattr(self.current_model, 'config') else 'Inconnue'}"
|
367 |
|
368 |
except Exception as e:
|
369 |
error_msg = f"❌ Erreur lors du chargement: {str(e)}"
|
|
|
438 |
info += f"📈 Exemples: {len(self.training_data):,}\n"
|
439 |
info += f"📝 Colonnes: {list(self.training_data.column_names)}\n"
|
440 |
|
441 |
+
def diagnose_model(self, model_name: str):
|
442 |
+
"""Diagnostique un modèle avant chargement"""
|
443 |
+
if not model_name.strip():
|
444 |
+
return "❌ Veuillez entrer un nom de modèle"
|
445 |
+
|
446 |
+
try:
|
447 |
+
from transformers import AutoConfig
|
448 |
+
import requests
|
449 |
+
|
450 |
+
result = f"🔍 DIAGNOSTIC DU MODÈLE: {model_name}\n\n"
|
451 |
+
|
452 |
+
# Vérification de l'existence
|
453 |
+
try:
|
454 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
455 |
+
result += "✅ Modèle accessible\n"
|
456 |
+
|
457 |
+
# Informations sur la configuration
|
458 |
+
result += f"📋 Type de modèle: {getattr(config, 'model_type', 'Non défini')}\n"
|
459 |
+
result += f"🏗️ Architecture: {getattr(config, 'architectures', ['Inconnue'])}\n"
|
460 |
+
result += f"📚 Vocabulaire: {getattr(config, 'vocab_size', 'Inconnu')}\n"
|
461 |
+
result += f"🧠 Couches cachées: {getattr(config, 'hidden_size', 'Inconnu')}\n"
|
462 |
+
result += f"🔢 Nombre de couches: {getattr(config, 'num_hidden_layers', 'Inconnu')}\n"
|
463 |
+
|
464 |
+
# Recommandations
|
465 |
+
if not hasattr(config, 'model_type') or config.model_type is None:
|
466 |
+
result += "\n⚠️ PROBLÈME: model_type manquant\n"
|
467 |
+
result += "💡 SOLUTION: Le chargeur essaiera de détecter automatiquement\n"
|
468 |
+
|
469 |
+
if hasattr(config, 'architectures') and config.architectures:
|
470 |
+
arch = config.architectures[0].lower()
|
471 |
+
if 'llama' in arch:
|
472 |
+
result += "🎯 Type détecté: LLaMA\n"
|
473 |
+
elif 'mistral' in arch:
|
474 |
+
result += "🎯 Type détecté: Mistral\n"
|
475 |
+
elif 'qwen' in arch:
|
476 |
+
result += "🎯 Type détecté: Qwen\n"
|
477 |
+
elif 'phi' in arch:
|
478 |
+
result += "🎯 Type détecté: Phi\n"
|
479 |
+
|
480 |
+
result += "\n✅ Chargement possible avec les stratégies multiples"
|
481 |
+
|
482 |
+
except Exception as e:
|
483 |
+
result += f"❌ Erreur d'accès: {str(e)}\n"
|
484 |
+
result += "💡 Vérifiez que le modèle existe et est public\n"
|
485 |
+
|
486 |
+
return result
|
487 |
+
|
488 |
+
except Exception as e:
|
489 |
+
return f"❌ Erreur diagnostic: {str(e)}"
|
490 |
|
491 |
# Initialisation
|
492 |
trainer = MultimodalTrainer()
|
|
|
560 |
value="causal"
|
561 |
)
|
562 |
load_model_btn = gr.Button("🔄 Charger le modèle", variant="primary")
|
563 |
+
diagnose_btn = gr.Button("🔍 Diagnostiquer le modèle", variant="secondary")
|
564 |
|
565 |
with gr.Column():
|
566 |
model_status = gr.Textbox(
|
|
|
582 |
outputs=model_status
|
583 |
)
|
584 |
|
585 |
+
diagnose_btn.click(
|
586 |
+
trainer.diagnose_model,
|
587 |
+
inputs=[model_input],
|
588 |
+
outputs=model_status
|
589 |
+
)
|
590 |
+
|
591 |
info_btn.click(trainer.get_model_info, outputs=model_info)
|
592 |
|
593 |
with gr.Tab("📊 Données"):
|