|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import time |
|
|
|
client = InferenceClient("lambdaindie/lambdai") |
|
|
|
css = """ |
|
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap'); |
|
|
|
* { |
|
font-family: 'JetBrains Mono', monospace !important; |
|
} |
|
|
|
body { |
|
background-color: #111; |
|
color: #e0e0e0; |
|
} |
|
|
|
.markdown-think { |
|
background-color: #1e1e1e; |
|
border-left: 4px solid #555; |
|
padding: 10px; |
|
margin-bottom: 8px; |
|
font-style: italic; |
|
white-space: pre-wrap; |
|
animation: pulse 1.5s infinite ease-in-out; |
|
} |
|
|
|
@keyframes pulse { |
|
0% { opacity: 0.6; } |
|
50% { opacity: 1.0; } |
|
100% { opacity: 0.6; } |
|
} |
|
""" |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
|
|
for user, assistant in history: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
thinking_prompt = messages + [{ |
|
"role": "user", |
|
"content": f"{message}\n\nThink step-by-step before answering." |
|
}] |
|
|
|
reasoning = "" |
|
yield '<div class="markdown-think">Thinking...</div>' |
|
|
|
for chunk in client.chat_completion( |
|
thinking_prompt, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content or "" |
|
reasoning += token |
|
styled_thought = f'<div class="markdown-think">{reasoning.strip()}</div>' |
|
yield styled_thought |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
title="λmabdAI", |
|
theme=gr.themes.Base(), |
|
css=css, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a concise, logical AI that explains its reasoning clearly before answering.", |
|
label="System Message", elem_classes=["jetbrains"]), |
|
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens", elem_classes=["jetbrains"]), |
|
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature", elem_classes=["jetbrains"]), |
|
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p", elem_classes=["jetbrains"]) |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |