lambdai / app.py
mariusjabami's picture
Update app.py
b51f88d verified
raw
history blame
3.64 kB
import gradio as gr
from huggingface_hub import InferenceClient
import time
# Clientes para texto e imagem
chat_client = InferenceClient("lambdaindie/lambdai")
image_client = InferenceClient("stabilityai/stable-diffusion-2")
# Fonte global
gr.themes.Base().set(font=["JetBrains Mono", "monospace"])
css = """
body {
font-family: 'JetBrains Mono', monospace;
background-color: #111;
color: #e0e0e0;
}
.gr-textbox textarea {
background-color: #181818 !important;
color: #fff !important;
font-family: 'JetBrains Mono', monospace;
border-radius: 8px;
}
.markdown-think {
background-color: #1e1e1e;
border-left: 4px solid #555;
padding: 10px;
margin-bottom: 8px;
font-style: italic;
animation: pulse 1.5s infinite ease-in-out;
}
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1.0; }
100% { opacity: 0.6; }
}
"""
# Função do chatbot com raciocínio
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}] if system_message else []
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
thinking_prompt = messages + [
{"role": "user", "content": f"{message}\n\nThink step-by-step before answering."}
]
reasoning = ""
yield '<div class="markdown-think">Thinking...</div>'
for chunk in chat_client.chat_completion(
thinking_prompt,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content or ""
reasoning += token
yield f'<div class="markdown-think">{reasoning.strip()}</div>'
time.sleep(0.5)
final_prompt = messages + [
{"role": "user", "content": message},
{"role": "assistant", "content": reasoning.strip()},
{"role": "user", "content": "Now answer based on your reasoning above."}
]
final_answer = ""
for chunk in chat_client.chat_completion(
final_prompt,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content or ""
final_answer += token
yield final_answer.strip()
# Função para gerar imagem
def generate_image(prompt):
return image_client.text_to_image(prompt, guidance_scale=7.5)
# Interface Gradio
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
gr.Markdown("# λmabdAI")
with gr.Tabs():
with gr.Tab("Chat"):
gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(
value="You are a concise, logical AI that explains its reasoning clearly before answering.",
label="System Message"
),
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
]
)
with gr.Tab("Image Generator"):
gr.Markdown("### Generate an image from a prompt")
prompt = gr.Textbox(label="Prompt")
output = gr.Image(type="pil")
btn = gr.Button("Generate")
btn.click(fn=generate_image, inputs=prompt, outputs=output)
if __name__ == "__main__":
demo.launch()