File size: 9,617 Bytes
e8f9d10
 
 
86d6248
3150894
86d6248
716eebd
e8f9d10
3150894
e8f9d10
 
86d6248
65c747d
 
 
 
ddd02b3
 
65c747d
e8f9d10
 
 
 
 
 
 
 
 
 
 
716eebd
e8f9d10
 
 
 
 
65c747d
716eebd
 
 
 
e8f9d10
 
 
716eebd
e8f9d10
 
 
 
 
716eebd
e8f9d10
 
 
 
 
65c747d
716eebd
e8f9d10
 
 
716eebd
e8f9d10
716eebd
e8f9d10
 
 
 
716eebd
e8f9d10
 
65c747d
e8f9d10
 
 
 
 
 
 
716eebd
e8f9d10
 
 
 
 
86d6248
073aa83
716eebd
 
 
86d6248
 
 
 
 
 
 
 
073aa83
716eebd
 
 
073aa83
 
 
 
 
716eebd
e8f9d10
 
 
86d6248
f67ddbd
 
8784815
86d6248
 
3150894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f9d10
 
86d6248
3150894
58a5b8d
3150894
 
86d6248
e8f9d10
716eebd
e8f9d10
58a5b8d
 
3150894
 
58a5b8d
3150894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f9d10
ddd02b3
e8f9d10
ddd02b3
716eebd
e8f9d10
 
716eebd
e8f9d10
ddd02b3
e8f9d10
 
65c747d
e8f9d10
65c747d
e8f9d10
 
 
 
 
 
86d6248
65c747d
 
 
 
 
 
 
 
 
716eebd
b6efbf5
 
 
 
65c747d
e8f9d10
 
65c747d
 
 
e8f9d10
65c747d
 
e8f9d10
 
 
86d6248
e8f9d10
716eebd
e8f9d10
 
 
ddd02b3
e8f9d10
 
 
86d6248
716eebd
9001620
 
 
86d6248
e8f9d10
 
 
65c747d
 
 
e8f9d10
65c747d
 
86d6248
 
 
 
716eebd
 
 
86d6248
073aa83
 
 
 
 
716eebd
 
 
86d6248
 
073aa83
 
 
 
 
 
 
 
 
 
 
 
 
 
86d6248
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from __future__ import annotations

import logging
import os
import time
from datetime import datetime
from typing import Dict, List, Union

from fastapi import APIRouter, BackgroundTasks, HTTPException, Header, Request
from pydantic import BaseModel, Field

from .analytics import Analytics
from .service import (
    ModelConfig,
    TextModelType,
    EmbeddingsService,
    ModelKind,
    detect_model_kind,
)

logger = logging.getLogger(__name__)

router = APIRouter(
    tags=["v1"],
    responses={404: {"description": "Not found"}},
)


class EmbeddingRequest(BaseModel):
    """
    Request model for generating embeddings.
    """

    model: str = Field(
        default=TextModelType.MULTILINGUAL_E5_SMALL.value,
        description=(
            "Which model ID to use? "
            "Text options: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', "
            "'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', "
            "'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. "
            "Image option: ['siglip-base-patch16-256-multilingual']."
        ),
    )
    input: Union[str, List[str]] = Field(
        ..., description="Text(s) or image URL(s)/path(s)."
    )


class RankRequest(BaseModel):
    """
    Request model for ranking candidates.
    """

    model: str = Field(
        default=TextModelType.MULTILINGUAL_E5_SMALL.value,
        description=(
            "Model ID for the queries. "
            "Can be a text or image model (e.g. 'siglip-base-patch16-256-multilingual' for images)."
        ),
    )
    queries: Union[str, List[str]] = Field(
        ..., description="Query text(s) or image(s) depending on the model type."
    )
    candidates: List[str] = Field(..., description="Candidate texts to rank.")


class EmbeddingResponse(BaseModel):
    """
    Response model for embeddings.
    """

    object: str
    data: List[dict]
    model: str
    usage: dict


class RankResponse(BaseModel):
    """
    Response model for ranking results.
    """

    probabilities: List[List[float]]
    cosine_similarities: List[List[float]]


class StatsBucket(BaseModel):
    """
    Model for daily/weekly/monthly/yearly stats.
    """

    total: Dict[str, int]
    daily: Dict[str, int]
    weekly: Dict[str, int]
    monthly: Dict[str, int]
    yearly: Dict[str, int]


class StatsResponse(BaseModel):
    """
    Analytics stats response model, including both access and token counts.
    """

    access: StatsBucket
    tokens: StatsBucket


# Initialize the embeddings service and analytics.
service_config = ModelConfig()
embeddings_service = EmbeddingsService(config=service_config)

analytics = Analytics(
    url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"),
    token=os.environ.get("REDIS_TOKEN", "***"),
    sync_interval=30 * 60,  # 30 minutes
)

# Rate limiting cache: {ip: [timestamp1, timestamp2, ...]}
rate_limit_cache: Dict[str, List[float]] = {}


def check_rate_limit(
    client_ip: str, max_requests: int = 4, window_seconds: int = 60
) -> bool:
    """
    Check if the client IP has exceeded the rate limit.
    Returns True if request is allowed, False if rate limited.
    """
    current_time = time.time()

    # Clean up old entries and get current requests
    if client_ip in rate_limit_cache:
        # Remove requests older than the window
        rate_limit_cache[client_ip] = [
            timestamp
            for timestamp in rate_limit_cache[client_ip]
            if current_time - timestamp < window_seconds
        ]
    else:
        rate_limit_cache[client_ip] = []

    # Check if under limit
    if len(rate_limit_cache[client_ip]) < max_requests:
        # Add current request timestamp
        rate_limit_cache[client_ip].append(current_time)
        return True

    return False


@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
async def create_embeddings(
    request: EmbeddingRequest,
    background_tasks: BackgroundTasks,
    fastapi_request: Request,
    authorization: str = Header(None),
):
    """
    Generate embeddings for the given text or image inputs.
    """
    # Check authorization
    expected_token = os.environ.get("ACCESS_TOKEN")
    is_authenticated = False

    if expected_token:
        if authorization:
            # Support both "Bearer <token>" and plain token formats
            token = authorization
            if authorization.startswith("Bearer "):
                token = authorization[7:]  # Remove "Bearer " prefix

            if token == expected_token:
                is_authenticated = True

        # If not authenticated, check rate limit
        if not is_authenticated:
            # Get client IP
            client_ip = fastapi_request.client.host
            if hasattr(fastapi_request.headers, "get"):
                # Check for forwarded IP (in case of proxy)
                forwarded_for = fastapi_request.headers.get("X-Forwarded-For")
                if forwarded_for:
                    client_ip = forwarded_for.split(",")[0].strip()

                real_ip = fastapi_request.headers.get("X-Real-IP")
                if real_ip:
                    client_ip = real_ip.strip()

            # Check rate limit (4 requests per minute)
            if not check_rate_limit(client_ip):
                raise HTTPException(
                    status_code=429,
                    detail="Rate limit exceeded. Maximum 4 requests per minute for unauthenticated users.",
                )

            # If no authorization header was provided when ACCESS_TOKEN is set
            if not authorization:
                raise HTTPException(
                    status_code=401, detail="Authorization header required"
                )
            else:
                raise HTTPException(
                    status_code=401, detail="Invalid authorization token"
                )

    try:
        modality = detect_model_kind(request.model)
        embeddings = await embeddings_service.generate_embeddings(
            model=request.model,
            inputs=request.input,
        )

        # Estimate tokens if using a text model.
        total_tokens = 0
        if modality == ModelKind.TEXT:
            total_tokens = embeddings_service.estimate_tokens(request.input)

        resp = {
            "object": "list",
            "data": [],
            "model": request.model,
            "usage": {
                "prompt_tokens": total_tokens,
                "total_tokens": total_tokens,
            },
        }

        for idx, emb in enumerate(embeddings):
            resp["data"].append(
                {
                    "object": "embedding",
                    "index": idx,
                    "embedding": emb.tolist(),
                }
            )

        # Record analytics in the background.
        background_tasks.add_task(
            analytics.access, request.model, resp["usage"]["total_tokens"]
        )

        return resp

    except Exception as e:
        msg = (
            "Failed to generate embeddings. Check model ID, inputs, etc.\n"
            f"Details: {str(e)}"
        )
        logger.error(msg)
        raise HTTPException(status_code=500, detail=msg)


@router.post("/rank", response_model=RankResponse, tags=["rank"])
async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks):
    """
    Rank candidate texts against the given queries.
    """
    try:
        results = await embeddings_service.rank(
            model=request.model,
            queries=request.queries,
            candidates=request.candidates,
        )

        # Record analytics in the background.
        background_tasks.add_task(
            analytics.access, request.model, results["usage"]["total_tokens"]
        )

        return results

    except Exception as e:
        msg = (
            "Failed to rank candidates. Check model ID, inputs, etc.\n"
            f"Details: {str(e)}"
        )
        logger.error(msg)
        raise HTTPException(status_code=500, detail=msg)


@router.get("/stats", response_model=StatsResponse, tags=["stats"])
async def get_stats():
    """
    Retrieve usage statistics for all models, including access counts and token usage.
    """
    try:
        day_key = datetime.utcnow().strftime("%Y-%m-%d")
        week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}"
        month_key = datetime.utcnow().strftime("%Y-%m")
        year_key = datetime.utcnow().strftime("%Y")

        stats_data = (
            await analytics.stats()
        )  # Expected to return a dict with 'access' and 'tokens' keys

        return {
            "access": {
                "total": stats_data["access"].get("total", {}),
                "daily": stats_data["access"].get(day_key, {}),
                "weekly": stats_data["access"].get(week_key, {}),
                "monthly": stats_data["access"].get(month_key, {}),
                "yearly": stats_data["access"].get(year_key, {}),
            },
            "tokens": {
                "total": stats_data["tokens"].get("total", {}),
                "daily": stats_data["tokens"].get(day_key, {}),
                "weekly": stats_data["tokens"].get(week_key, {}),
                "monthly": stats_data["tokens"].get(month_key, {}),
                "yearly": stats_data["tokens"].get(year_key, {}),
            },
        }
    except Exception as e:
        msg = f"Failed to fetch analytics stats: {str(e)}"
        logger.error(msg)
        raise HTTPException(status_code=500, detail=msg)