Spaces:
Sleeping
Sleeping
Commit
·
2d1d8cb
1
Parent(s):
12ee82e
it seems to work now, show plots again
Browse files- app.py +3 -3
- mpl_data_plotter.py +10 -14
app.py
CHANGED
|
@@ -39,9 +39,9 @@ def update_all_plots(frequency, split_name):
|
|
| 39 |
|
| 40 |
print(f"Defining blocks...")
|
| 41 |
# Create Gradio interface
|
| 42 |
-
with gr.Blocks(title="
|
| 43 |
-
gr.Markdown("##
|
| 44 |
-
gr.Markdown("
|
| 45 |
|
| 46 |
with gr.Row():
|
| 47 |
frequency_slider = gr.Slider(
|
|
|
|
| 39 |
|
| 40 |
print(f"Defining blocks...")
|
| 41 |
# Create Gradio interface
|
| 42 |
+
with gr.Blocks(title="BGC Keyword Plotter") as demo:
|
| 43 |
+
gr.Markdown("## BGC Keyword Plotter")
|
| 44 |
+
gr.Markdown("Select the model name and minimal number of domains in Antismash-db subset.")
|
| 45 |
|
| 46 |
with gr.Row():
|
| 47 |
frequency_slider = gr.Slider(
|
mpl_data_plotter.py
CHANGED
|
@@ -14,17 +14,14 @@ class MatplotlibDataPlotter:
|
|
| 14 |
|
| 15 |
self.num_domains_in_region_df = num_domains_in_region_df
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
def plot_single_domains(self, num_domains, split_name):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
# single_df_subset = self.single_df.loc[self.single_df.cds_region_id.isin(selected_region_ids)]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
# split_name = 'stratified'
|
| 29 |
column_name = f'cosine_similarity_{split_name}'
|
| 30 |
# single_df_subset = single_df.loc[single_df.dom_location_len >= num_domains]
|
|
@@ -64,11 +61,10 @@ class MatplotlibDataPlotter:
|
|
| 64 |
return fig # plt.gcf()
|
| 65 |
|
| 66 |
def plot_pair_domains(self, num_domains, split_name):
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# pair_df_subset = self.pair_df.loc[self.pair_df.cds_region_id.isin(selected_region_ids)]
|
| 72 |
# split_name = 'stratified'
|
| 73 |
column_name = f'cosine_similarity_{split_name}'
|
| 74 |
# pair_df_subset = pair_df.loc[pair_df.dom_location_len >= num_domains]
|
|
|
|
| 14 |
|
| 15 |
self.num_domains_in_region_df = num_domains_in_region_df
|
| 16 |
|
| 17 |
+
self.single_domains_fig = plt.figure(figsize=(5, 10))
|
| 18 |
+
self.pair_domains_fig = plt.figure(figsize=(5, 10))
|
| 19 |
|
| 20 |
def plot_single_domains(self, num_domains, split_name):
|
| 21 |
+
selected_region_ids = self.num_domains_in_region_df.loc[
|
| 22 |
+
self.num_domains_in_region_df.num_domains >= num_domains,
|
| 23 |
+
'cds_region_id'].values
|
| 24 |
+
single_df_subset = self.single_df.loc[self.single_df.cds_region_id.isin(selected_region_ids)]
|
|
|
|
|
|
|
|
|
|
| 25 |
# split_name = 'stratified'
|
| 26 |
column_name = f'cosine_similarity_{split_name}'
|
| 27 |
# single_df_subset = single_df.loc[single_df.dom_location_len >= num_domains]
|
|
|
|
| 61 |
return fig # plt.gcf()
|
| 62 |
|
| 63 |
def plot_pair_domains(self, num_domains, split_name):
|
| 64 |
+
selected_region_ids = self.num_domains_in_region_df.loc[
|
| 65 |
+
self.num_domains_in_region_df.num_domains >= num_domains,
|
| 66 |
+
'cds_region_id'].values
|
| 67 |
+
pair_df_subset = self.pair_df.loc[self.pair_df.cds_region_id.isin(selected_region_ids)]
|
|
|
|
| 68 |
# split_name = 'stratified'
|
| 69 |
column_name = f'cosine_similarity_{split_name}'
|
| 70 |
# pair_df_subset = pair_df.loc[pair_df.dom_location_len >= num_domains]
|