Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +7 -6
src/streamlit_app.py
CHANGED
@@ -50,7 +50,7 @@ st.markdown(
|
|
50 |
)
|
51 |
# βββ Load data ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
52 |
@st.cache_data
|
53 |
-
def load_data(path
|
54 |
df = pd.read_json(path, lines=True)
|
55 |
score_cols = [f"T{i}" for i in range(1, 12)]
|
56 |
df["Avg"] = df[score_cols].mean(axis=1).round(1)
|
@@ -59,11 +59,6 @@ def load_data(path="src/models.json"):
|
|
59 |
df[f"{col}_rank"] = df[col].rank(ascending=False, method="min").astype(int)
|
60 |
return df
|
61 |
|
62 |
-
df = load_data()
|
63 |
-
|
64 |
-
# Precompute max ranks for color scaling
|
65 |
-
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
|
66 |
-
max_ranks = {col: df[f"{col}_rank"].max() for col in score_cols}
|
67 |
|
68 |
# one page description
|
69 |
st.markdown("## Leaderboard")
|
@@ -73,6 +68,12 @@ tiers = ['F1', 'Accuracy']
|
|
73 |
selected_tier = st.selectbox('Select metric:', tiers)
|
74 |
|
75 |
if selected_tier == 'F1':
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Build raw HTML table
|
77 |
cols = ["Model"] + [f"T{i}" for i in range(1,12)] + ["Avg"]
|
78 |
html = "<table style='border-collapse:collapse; width:100%; font-size:14px;'>"
|
|
|
50 |
)
|
51 |
# βββ Load data ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
52 |
@st.cache_data
|
53 |
+
def load_data(path):
|
54 |
df = pd.read_json(path, lines=True)
|
55 |
score_cols = [f"T{i}" for i in range(1, 12)]
|
56 |
df["Avg"] = df[score_cols].mean(axis=1).round(1)
|
|
|
59 |
df[f"{col}_rank"] = df[col].rank(ascending=False, method="min").astype(int)
|
60 |
return df
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# one page description
|
64 |
st.markdown("## Leaderboard")
|
|
|
68 |
selected_tier = st.selectbox('Select metric:', tiers)
|
69 |
|
70 |
if selected_tier == 'F1':
|
71 |
+
df = load_data("src/models.json")
|
72 |
+
|
73 |
+
# Precompute max ranks for color scaling
|
74 |
+
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
|
75 |
+
max_ranks = {col: df[f"{col}_rank"].max() for col in score_cols}
|
76 |
+
|
77 |
# Build raw HTML table
|
78 |
cols = ["Model"] + [f"T{i}" for i in range(1,12)] + ["Avg"]
|
79 |
html = "<table style='border-collapse:collapse; width:100%; font-size:14px;'>"
|