Spaces:
Running
Running
File size: 10,855 Bytes
eaf8c2f e3ff159 eaf8c2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
#!/usr/bin/env python3
"""
runner.py
Entry point for game simulations.
Handles Ray initialization, SLURM environment variables, and orchestration.
"""
import logging
import resource
import subprocess
import sys
from pathlib import Path
from typing import Any, Dict, List, Tuple
import ray
from dotenv import load_dotenv
from simulate import simulate_game
from game_reasoning_arena.arena.utils.cleanup import full_cleanup
from game_reasoning_arena.arena.utils.seeding import set_seed
from game_reasoning_arena.configs.config_parser import (
build_cli_parser,
parse_config
)
# Ensure the src directory is in the Python path
current_dir = Path(__file__).parent
src_dir = current_dir / ".." / "src"
sys.path.insert(0, str(src_dir.resolve()))
# Set the soft and hard core file size limits to 0 (disable core dumps)
resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
filename="run_logs.txt",
filemode="w",
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def initialize_ray(config=None):
"""
Initializes Ray if not already initialized.
Args:
config: Optional configuration dictionary containing Ray settings
"""
if not ray.is_initialized():
ray_config = config.get("ray_config", {}) if config else {}
# Extract Ray initialization parameters
init_params = {
"ignore_reinit_error": True,
}
# Add optional parameters if specified
if ray_config.get("num_cpus"):
init_params["num_cpus"] = ray_config["num_cpus"]
if ray_config.get("num_gpus"):
init_params["num_gpus"] = ray_config["num_gpus"]
if ray_config.get("object_store_memory"):
init_params["object_store_memory"] = (
ray_config["object_store_memory"]
)
if ray_config.get("include_dashboard") is not None:
init_params["include_dashboard"] = ray_config["include_dashboard"]
if ray_config.get("dashboard_port"):
init_params["dashboard_port"] = ray_config["dashboard_port"]
ray.init(**init_params)
logger.info("Ray initialized with config: %s", init_params)
@ray.remote
def simulate_game_ray(
game_name: str,
config: Dict[str, Any],
seed: int
) -> Tuple[str, List[Dict[str, Any]]]:
"""
Ray remote wrapper for parallel game simulation.
Calls the standard simulate_game function.
"""
return simulate_game(game_name, config, seed)
def create_episode_tasks(
game_name: str,
game_config: Dict[str, Any],
seed: int,
num_episodes: int
) -> List[Any]:
"""
Create Ray tasks for individual episodes of a game.
Args:
game_name: Name of the game
game_config: Game-specific configuration
seed: Base seed for random number generation
num_episodes: Number of episodes to create tasks for
Returns:
List of Ray task futures
"""
episode_tasks = []
for episode in range(num_episodes):
episode_config = {
**game_config,
"num_episodes": 1 # Each task handles only 1 episode
}
episode_seed = seed + episode
episode_task = simulate_game_ray.remote(
game_name, episode_config, episode_seed
)
episode_tasks.append(episode_task)
return episode_tasks
def create_game_tasks(
game_configs: List[Dict[str, Any]],
base_config: Dict[str, Any],
seed: int
) -> List[Tuple[str, List[Any]]]:
"""
Create Ray tasks for all games, handling episode parallelization strategy.
Args:
game_configs: List of game configurations
base_config: Base configuration dictionary
seed: Random seed
Returns:
List of (game_name, task_futures) tuples
"""
pending_game_tasks = []
for game_config in game_configs:
game_name = game_config["game_name"]
game_specific_config = create_game_config(base_config, game_config)
# Decide parallelization strategy for episodes
num_episodes = base_config.get("num_episodes", 1)
parallel_episodes = (
base_config.get("parallel_episodes", False) and num_episodes > 1
)
if parallel_episodes:
# Strategy 1: Parallelize episodes across multiple Ray tasks
episode_tasks = create_episode_tasks(
game_name, game_specific_config, seed, num_episodes
)
pending_game_tasks.append((game_name, episode_tasks))
else:
# Strategy 2: Sequential episodes within a single Ray task
single_game_task = simulate_game_ray.remote(
game_name, game_specific_config, seed
)
pending_game_tasks.append((game_name, [single_game_task]))
return pending_game_tasks
def execute_parallel_simulations(
game_configs: List[Dict[str, Any]],
config: Dict[str, Any],
seed: int
) -> List[Any]:
"""
Execute simulations using Ray for parallel processing.
Args:
game_configs: List of game configurations
config: Base configuration dictionary
seed: Random seed
Returns:
List of simulation results
"""
all_results = []
# Create all Ray tasks
pending_game_tasks = create_game_tasks(game_configs, config, seed)
# Collect results from completed tasks
for game_name, task_futures in pending_game_tasks:
episode_results = ray.get(task_futures)
all_results.extend(episode_results)
logger.info(
"Parallel simulation results for %s completed (%d episodes)",
game_name, len(episode_results)
)
return all_results
def execute_sequential_simulations(
game_configs: List[Dict[str, Any]],
config: Dict[str, Any],
seed: int
) -> List[Any]:
"""
Execute simulations sequentially without Ray.
Args:
game_configs: List of game configurations
config: Base configuration dictionary
seed: Random seed
Returns:
List of simulation results
"""
all_results = []
for game_config in game_configs:
game_name = game_config["game_name"]
game_specific_config = create_game_config(config, game_config)
result = simulate_game(game_name, game_specific_config, seed)
all_results.append(result)
logger.info(
"Sequential simulation results for %s completed",
game_name
)
return all_results
def create_game_config(
base_config: Dict[str, Any],
game_config: Dict[str, Any]
) -> Dict[str, Any]:
"""
Create a game-specific configuration from the base config.
Args:
base_config: The main configuration dictionary
game_config: Game-specific configuration to merge
Returns:
Merged configuration dictionary for the specific game
"""
game_name = game_config["game_name"]
# Use absolute path to results directory (project root level)
if "output_path" not in game_config:
project_root = Path(__file__).resolve().parent.parent
results_dir = project_root / "results"
filename = f"{game_name}_simulation_results.json"
default_output_path = str(results_dir / filename)
else:
default_output_path = game_config["output_path"]
output_path = game_config.get("output_path", default_output_path)
return {
**base_config, # Inherit global settings
"env_config": game_config, # Game configuration
"max_game_rounds": game_config.get("max_game_rounds", None),
"num_episodes": base_config.get("num_episodes", 1),
"agents": base_config.get("agents", {}),
"output_path": output_path,
}
def run_simulation(config):
"""
Orchestrates simulation runs across multiple games and agent matchups.
Uses the provided configuration, sets up Ray if enabled, and collects
simulation results.
"""
seed = config.get("seed", 42)
set_seed(seed)
use_ray = config.get("use_ray", False) # Default to False for stability
if use_ray:
initialize_ray(config)
logger.info("Ray enabled - using distributed execution")
else:
logger.info("Ray disabled - using sequential execution")
# Handle both single game and multiple games configuration
game_configs = []
if "env_config" in config:
# Single game configuration (legacy)
game_configs = [config["env_config"]]
elif "env_configs" in config:
# Multiple games configuration
game_configs = config["env_configs"]
else:
raise ValueError(
"Configuration must contain either 'env_config' or 'env_configs'"
)
# Prepare results collection
all_results = []
# Choose execution strategy based on configuration
use_ray = config.get("use_ray", False)
should_use_parallel = use_ray and len(game_configs) > 1
if should_use_parallel:
logger.info("Using Ray for parallel execution")
all_results = execute_parallel_simulations(game_configs, config, seed)
else:
execution_mode = "Ray disabled" if not use_ray else "single game"
logger.info("Using sequential execution (%s)", execution_mode)
all_results = execute_sequential_simulations(
game_configs, config, seed
)
logger.info(
"All simulations completed. Total results: %d",
len(all_results)
)
return all_results
def main():
"""Main entry point."""
parser = build_cli_parser()
args = parser.parse_args()
# Parse config once in main
config = parse_config(args)
# Configure logging level based on config
log_level = config.get("log_level", "INFO")
numeric_level = getattr(logging, log_level.upper(), logging.INFO)
# Reconfigure logging with the correct level
logging.basicConfig(
filename="run_logs.txt",
filemode="w",
level=numeric_level,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
force=True # Force reconfiguration
)
logger.info(config)
try:
# Run simulation with parsed config
print("Running simulation...")
run_simulation(config)
print("Running post-game processing...")
current_dir = Path(__file__).parent
script_path = (
current_dir / ".." / "analysis" / "post_game_processing.py"
)
subprocess.run(["python3", str(script_path)], check=True)
print("Simulation completed.")
finally:
# Clean up resources after simulation
full_cleanup("auto")
if __name__ == "__main__":
main()
|