Spaces:
Running
Running
File size: 15,503 Bytes
7e15c9c a275f83 7e15c9c a275f83 7e15c9c a275f83 7e15c9c a275f83 7e15c9c a275f83 7e15c9c a275f83 7e15c9c ac3c675 7e15c9c a275f83 7e15c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
#!/usr/bin/env python3
"""
Gradio Configuration Generator
This module creates configurations compatible with the existing runner.py and
simulate.py infrastructure, eliminating code duplication in the Gradio app.
"""
import tempfile
import yaml
from typing import Dict, Any, Tuple
import logging
logger = logging.getLogger(__name__)
def create_config_for_gradio_game(
game_name: str,
player1_type: str,
player2_type: str,
player1_model: str = None,
player2_model: str = None,
rounds: int = 1,
seed: int = 42,
use_ray: bool = False
) -> Dict[str, Any]:
"""
Create a configuration dictionary compatible with the existing
runner.py and simulate.py infrastructure.
Args:
game_name: Name of the game to play
player1_type: Type of player 1 (human, random, llm)
player2_type: Type of player 2 (human, random, llm)
player1_model: LLM model for player 1 (if applicable)
player2_model: LLM model for player 2 (if applicable)
rounds: Number of episodes to play
seed: Random seed for reproducibility
use_ray: Whether to use Ray for parallel processing
Returns:
Configuration dictionary compatible with runner.py
"""
# Base configuration structure (matches default_simulation_config)
config = {
"env_config": {
"game_name": game_name,
"max_game_rounds": None,
},
"num_episodes": rounds,
"seed": seed,
"use_ray": use_ray,
"mode": f"{player1_type}_vs_{player2_type}",
"agents": {},
"llm_backend": {
"max_tokens": 250,
"temperature": 0.1,
"default_model": "litellm_groq/gemma-7b-it",
},
"log_level": "INFO",
}
# Configure player agents
config["agents"]["player_0"] = _create_agent_config(
player1_type, player1_model)
config["agents"]["player_1"] = _create_agent_config(
player2_type, player2_model)
# Debug: Print the agent configurations
print("๐ CONFIG DEBUG: Agent configurations created:")
print(f" Player 0 config: {config['agents']['player_0']}")
print(f" Player 1 config: {config['agents']['player_1']}")
# Update backend default model if LLM is used
# Check player 1 first
if (player1_type == "llm" and player1_model) or player1_type.startswith("llm_"):
if player1_model:
config["llm_backend"]["default_model"] = player1_model
elif player1_type.startswith("llm_"):
# Extract model from player type (e.g., "llm_gpt2" -> "gpt2")
config["llm_backend"]["default_model"] = player1_type[4:]
# Check player 2 if player 1 doesn't have LLM
elif (player2_type == "llm" and player2_model) or player2_type.startswith("llm_"):
if player2_model:
config["llm_backend"]["default_model"] = player2_model
elif player2_type.startswith("llm_"):
# Extract model from player type (e.g., "llm_gpt2" -> "gpt2")
config["llm_backend"]["default_model"] = player2_type[4:]
return config
def _create_agent_config(player_type: str,
model: str = None) -> Dict[str, Any]:
"""
Create agent configuration based on player type and model.
Handles both Gradio-specific formats (e.g., "hf_gpt2", "random_bot")
and standard formats (e.g., "llm", "random").
Args:
player_type: Type of player (human, random, random_bot, hf_*, etc.)
model: Model name for LLM agents
Returns:
Agent configuration dictionary
"""
print("๐ง AGENT CONFIG DEBUG: Creating agent config for:")
print(f" player_type: {player_type}")
print(f" model: {model}")
# Handle Gradio-specific formats
if player_type == "random_bot":
config = {"type": "random"}
elif player_type.startswith("hf_"):
# Extract model from player type (e.g., "hf_gpt2" -> "gpt2")
model_from_type = player_type[3:] # Remove "hf_" prefix
# Use the hf_prefixed model name for LLM registry lookup
model_name = f"hf_{model_from_type}"
config = {
"type": "llm", # Use standard LLM agent type
"model": model_name # This will be looked up in LLM_REGISTRY
}
elif player_type.startswith("llm_"):
# For backwards compatibility with LiteLLM models
model_from_type = player_type[4:] # Remove "llm_" prefix
# Map display model names to actual model names with prefixes
model_name = model or model_from_type
if not model_name.startswith(("litellm_", "vllm_")):
# Add litellm_ prefix for LiteLLM models
model_name = f"litellm_{model_name}"
config = {
"type": "llm",
"model": model_name
}
elif player_type == "llm":
model_name = model or "litellm_groq/gemma-7b-it"
if not model_name.startswith(("litellm_", "vllm_")):
model_name = f"litellm_{model_name}"
config = {
"type": "llm",
"model": model_name
}
elif player_type == "random":
config = {"type": "random"}
elif player_type == "human":
config = {"type": "human"} # This might need additional handling
else:
# Default to random for unknown types
config = {"type": "random"}
print(f" โ Created config: {config}")
return config
def create_temporary_config_file(config: Dict[str, Any]) -> str:
"""
Create a temporary YAML config file that can be used with runner.py.
Args:
config: Configuration dictionary
Returns:
Path to the temporary config file
"""
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(
mode='w',
suffix='.yaml',
delete=False
)
try:
yaml.dump(config, temp_file, default_flow_style=False)
temp_file.flush()
return temp_file.name
finally:
temp_file.close()
def run_game_with_existing_infrastructure(
game_name: str,
player1_type: str,
player2_type: str,
player1_model: str = None,
player2_model: str = None,
rounds: int = 1,
seed: int = 42
) -> str:
"""
Run a game using the existing runner.py and simulate.py infrastructure,
but capture detailed game logs for Gradio display.
This function reuses the existing simulation infrastructure while providing
detailed game output for the Gradio interface.
Args:
game_name: Name of the game to play
player1_type: Type of player 1
player2_type: Type of player 2
player1_model: LLM model for player 1 (if applicable)
player2_model: LLM model for player 2 (if applicable)
rounds: Number of episodes to play
seed: Random seed
Returns:
Detailed game simulation results as a string
"""
try:
# Import the existing infrastructure
from src.game_reasoning_arena.arena.utils.seeding import set_seed
from src.game_reasoning_arena.backends import initialize_llm_registry
from src.game_reasoning_arena.arena.games.registry import registry
from src.game_reasoning_arena.arena.agents.policy_manager import (
initialize_policies, policy_mapping_fn
)
# Create configuration
config = create_config_for_gradio_game(
game_name=game_name,
player1_type=player1_type,
player2_type=player2_type,
player1_model=player1_model,
player2_model=player2_model,
rounds=rounds,
seed=seed
)
# Set seed
set_seed(seed)
# Initialize LLM registry (required for simulate_game)
initialize_llm_registry()
# Use existing infrastructure but capture detailed logs
return _run_game_with_detailed_logging(game_name, config, seed)
except ImportError as e:
logger.error(f"Failed to import simulation infrastructure: {e}")
return f"Error: Simulation infrastructure not available. {e}"
except Exception as e:
logger.error(f"Game simulation failed: {e}")
return f"Error during game simulation: {e}"
def _run_game_with_detailed_logging(
game_name: str,
config: Dict[str, Any],
seed: int
) -> str:
"""
Run game simulation with detailed logging for Gradio display.
This reuses the existing infrastructure components but captures
detailed game state information for user display.
"""
from src.game_reasoning_arena.arena.games.registry import registry
from src.game_reasoning_arena.arena.agents.policy_manager import (
initialize_policies, policy_mapping_fn
)
# Initialize using existing infrastructure
policies_dict = initialize_policies(config, game_name, seed)
env = registry.make_env(game_name, config)
# Create player mapping (reusing existing logic)
player_to_agent = {}
for i, policy_name in enumerate(policies_dict.keys()):
player_to_agent[i] = policies_dict[policy_name]
game_log = []
# Add header
game_log.append("๐ฎ GAME SIMULATION RESULTS")
game_log.append("=" * 50)
game_log.append(f"Game: {game_name.replace('_', ' ').title()}")
game_log.append(f"Episodes: {config['num_episodes']}")
game_log.append("")
# Player information
game_log.append("๐ฅ PLAYERS:")
player1 = config["agents"]["player_0"]
player2 = config["agents"]["player_1"]
game_log.append(f" Player 0: {_format_player_info(player1)}")
game_log.append(f" Player 1: {_format_player_info(player2)}")
game_log.append("")
# Run episodes (reusing compute_actions logic from simulate.py)
for episode in range(config["num_episodes"]):
episode_seed = seed + episode
game_log.append(f"๐ฏ Episode {episode + 1}")
game_log.append("-" * 30)
observation_dict, _ = env.reset(seed=episode_seed)
terminated = truncated = False
step_count = 0
episode_rewards = {0: 0, 1: 0}
while not (terminated or truncated):
step_count += 1
game_log.append(f"\n๐ Step {step_count}")
# Show board state
try:
board = env.render_board(0)
game_log.append("Current board:")
game_log.append(board)
except:
game_log.append("Board state not available")
# Use the existing compute_actions logic from simulate.py
try:
action_dict = _compute_actions_for_gradio(
env, player_to_agent, observation_dict, game_log
)
except Exception as e:
game_log.append(f"โ Error computing actions: {e}")
truncated = True
break
# Step forward (reusing existing environment logic)
if not truncated:
observation_dict, rewards, terminated, truncated, _ = env.step(action_dict)
for player_id, reward in rewards.items():
episode_rewards[player_id] += reward
# Episode results
game_log.append(f"\n๐ Episode {episode + 1} Complete!")
try:
game_log.append("Final board:")
game_log.append(env.render_board(0))
except:
game_log.append("Final board state not available")
if episode_rewards[0] > episode_rewards[1]:
winner = "Player 0"
elif episode_rewards[1] > episode_rewards[0]:
winner = "Player 1"
else:
winner = "Draw"
game_log.append(f"๐ Winner: {winner}")
game_log.append(f"๐ Scores: Player 0={episode_rewards[0]}, Player 1={episode_rewards[1]}")
game_log.append("")
game_log.append("โ
Simulation completed successfully!")
game_log.append("Check the database logs for detailed move analysis.")
return "\n".join(game_log)
def _compute_actions_for_gradio(env, player_to_agent, observations, game_log):
"""
Compute actions and log details for Gradio display.
This reuses the compute_actions logic from simulate.py.
"""
if env.state.is_simultaneous_node():
# Simultaneous-move game
actions = {}
for player in player_to_agent:
agent_response = player_to_agent[player](observations[player])
action, reasoning = _extract_action_and_reasoning(agent_response)
actions[player] = action
# Always show both action number and action name (universal solution)
try:
action_name = env.state.action_to_string(player, action)
except Exception:
action_name = str(action)
game_log.append(f" Player {player} chooses action {action} ({action_name})")
if reasoning and reasoning != "None":
reasoning_preview = reasoning[:100] + ("..." if len(reasoning) > 100 else "")
game_log.append(f" Reasoning: {reasoning_preview}")
return actions
else:
# Turn-based game
current_player = env.state.current_player()
game_log.append(f"Player {current_player}'s turn")
agent_response = player_to_agent[current_player](observations[current_player])
action, reasoning = _extract_action_and_reasoning(agent_response)
game_log.append(f" Player {current_player} chooses action {action}")
if reasoning and reasoning != "None":
reasoning_preview = reasoning[:100] + ("..." if len(reasoning) > 100 else "")
game_log.append(f" Reasoning: {reasoning_preview}")
return {current_player: action}
def _extract_action_and_reasoning(agent_response):
"""Extract action and reasoning from agent response."""
if isinstance(agent_response, dict) and "action" in agent_response:
action = agent_response.get("action", -1)
reasoning = agent_response.get("reasoning", "None")
return action, reasoning
else:
return agent_response, "None"
def _format_player_info(player_config: Dict[str, Any]) -> str:
"""Format player information for display."""
player_type = player_config["type"]
if player_type == "llm":
model = player_config.get("model", "unknown")
return f"LLM ({model})"
else:
return player_type.replace("_", " ").title()
# For backward compatibility and easy integration
def create_gradio_compatible_config(
game_name: str,
player1_type: str,
player2_type: str,
player1_model: str = None,
player2_model: str = None,
rounds: int = 1
) -> Tuple[Dict[str, Any], str]:
"""
Create both a config dict and a temp file for maximum compatibility.
Returns:
Tuple of (config_dict, temp_file_path)
"""
config = create_config_for_gradio_game(
game_name, player1_type, player2_type,
player1_model, player2_model, rounds
)
temp_file = create_temporary_config_file(config)
return config, temp_file
if __name__ == "__main__":
# Example usage
config = create_config_for_gradio_game(
game_name="tic_tac_toe",
player1_type="llm",
player2_type="random",
player1_model="litellm_groq/llama-3.1-8b-instant",
rounds=3
)
print("Generated configuration:")
print(yaml.dump(config, default_flow_style=False))
|