File size: 7,212 Bytes
84e8aea
 
 
 
 
 
 
 
37a9f08
 
84e8aea
 
a54dbe6
a948689
84e8aea
 
 
 
 
 
37a9f08
 
84e8aea
 
a54dbe6
84e8aea
 
 
 
d401ea1
 
 
84e8aea
 
 
 
a54dbe6
84e8aea
 
 
a54dbe6
 
 
84e8aea
a54dbe6
84e8aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d401ea1
84e8aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a9f08
 
 
 
84e8aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a9f08
84e8aea
 
 
 
 
 
 
 
 
 
37a9f08
84e8aea
 
 
 
 
 
 
 
e41b635
84e8aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a9f08
84e8aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a9f08
84e8aea
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import glob
import hydra
import cv2
import numpy as np
import torch
from lib.utils import utils

from .pretrained_encoders import EncodingBackbone


class Dataset(torch.utils.data.Dataset):
    def __init__(self, metainfo, split):
        root = os.path.abspath(os.path.join(hydra.utils.get_original_cwd(), 'data', metainfo.data_dir))

        self.start_frame = metainfo.start_frame
        self.end_frame = metainfo.end_frame 
        self.skip_step = 1
        self.images, self.img_sizes = [], []
        self.training_indices = list(range(metainfo.start_frame, metainfo.end_frame, self.skip_step))
        
        self.frame_encoding_backbone = EncodingBackbone()

        # images
        img_dir = os.path.join(root, "image")
        self.img_paths = sorted(glob.glob(f"{img_dir}/*.png"))

        # only store the image paths to avoid OOM
        self.img_paths = [self.img_paths[i] for i in self.training_indices]
        for img_path in self.img_paths:
            if not os.path.exists(img_path):
                print(f'!!! The path {img_path} does not exist. !!!')            
        self.img_size = cv2.imread(self.img_paths[0]).shape[:2]
        self.n_images = len(self.img_paths)

        # coarse projected SMPL masks, only for sampling
        mask_dir = os.path.join(root, "mask")
        self.mask_paths = sorted(glob.glob(f"{mask_dir}/*.png"))
        self.mask_paths = [self.mask_paths[i] for i in self.training_indices]

        self.shape = np.load(os.path.join(root, "mean_shape.npy"))
        self.poses = np.load(os.path.join(root, 'poses.npy'))[self.training_indices]
        self.trans = np.load(os.path.join(root, 'normalize_trans.npy'))[self.training_indices]
        # cameras
        camera_dict = np.load(os.path.join(root, "cameras_normalize.npz"))
        scale_mats = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in self.training_indices]
        world_mats = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in self.training_indices]

        self.scale = 1 / scale_mats[0][0, 0]

        self.intrinsics_all = []
        self.pose_all = []
        for scale_mat, world_mat in zip(scale_mats, world_mats):
            P = world_mat @ scale_mat
            P = P[:3, :4]
            intrinsics, pose = utils.load_K_Rt_from_P(None, P)
            self.intrinsics_all.append(torch.from_numpy(intrinsics).float())
            self.pose_all.append(torch.from_numpy(pose).float())
        assert len(self.intrinsics_all) == len(self.pose_all)

        # other properties
        self.num_sample = split.num_sample
        self.sampling_strategy = "weighted"

    def __len__(self):
        return self.n_images

    def __getitem__(self, idx):
        # normalize RGB
        img = cv2.imread(self.img_paths[idx])

        # preprocess: BGR -> RGB -> Normalize
        img = img[:, :, ::-1] / 255

        mask = cv2.imread(self.mask_paths[idx])
        # preprocess: BGR -> Gray -> Mask
        mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) > 0

        img_size = self.img_size

        uv = np.mgrid[:img_size[0], :img_size[1]].astype(np.int32)
        uv = np.flip(uv, axis=0).copy().transpose(1, 2, 0).astype(np.float32)

        smpl_params = torch.zeros([86]).float()
        smpl_params[0] = torch.from_numpy(np.asarray(self.scale)).float() 

        smpl_params[1:4] = torch.from_numpy(self.trans[idx]).float()
        smpl_params[4:76] = torch.from_numpy(self.poses[idx]).float()
        smpl_params[76:] = torch.from_numpy(self.shape).float()

        # Pretrained encoding vector
        self.frame_encoding_backbone.eval()
        frame_encoding_vector = self.frame_encoding_backbone(torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float())

        if self.num_sample > 0:
            data = {
                "rgb": img,
                "uv": uv,
                "object_mask": mask,
            }

            samples, index_outside = utils.weighted_sampling(data, img_size, self.num_sample)
            inputs = {
                "uv": samples["uv"].astype(np.float32),
                "uv_0": np.copy(samples["uv"].astype(np.float32)),
                "intrinsics": self.intrinsics_all[idx],
                "pose": self.pose_all[idx],
                "smpl_params": smpl_params,
                'index_outside': index_outside,
                "frame_encoding_vector": frame_encoding_vector[0],
                "idx": idx
            }
            images = {"rgb": samples["rgb"].astype(np.float32)}
            return inputs, images
        else:
            inputs = {
                "uv": uv.reshape(-1, 2).astype(np.float32),
                "intrinsics": self.intrinsics_all[idx],
                "pose": self.pose_all[idx],
                "smpl_params": smpl_params,
                "frame_encoding_vector": frame_encoding_vector[0],
                "idx": idx
            }
            images = {
                "rgb": img.reshape(-1, 3).astype(np.float32),
                "img_size": self.img_size
            }
            return inputs, images

# TODO: At the moment the validset creates an instance of the validation set but using the training set as basis. We need to change to use the videos in the validset
class ValDataset(torch.utils.data.Dataset):
    def __init__(self, metainfo, split):
        self.dataset = Dataset(metainfo, split)
        self.img_size = self.dataset.img_size

        self.total_pixels = np.prod(self.img_size)
        self.pixel_per_batch = split.pixel_per_batch

    def __len__(self):
        return 1

    def __getitem__(self, idx):
        image_id = int(np.random.choice(len(self.dataset), 1))  
        self.data = self.dataset[image_id]
        inputs, images = self.data

        inputs = {
            "uv": inputs["uv"],
            "intrinsics": inputs['intrinsics'],
            "pose": inputs['pose'],
            "smpl_params": inputs["smpl_params"],
            'image_id': image_id,
            "frame_encoding_vector": inputs["frame_encoding_vector"],
            "idx": inputs['idx']
        }
        images = {
            "rgb": images["rgb"],
            "img_size": images["img_size"],
            'pixel_per_batch': self.pixel_per_batch,
            'total_pixels': self.total_pixels
        }
        return inputs, images

class TestDataset(torch.utils.data.Dataset):
    def __init__(self, metainfo, split):
        self.dataset = Dataset(metainfo, split)

        self.img_size = self.dataset.img_size

        self.total_pixels = np.prod(self.img_size)
        self.pixel_per_batch = split.pixel_per_batch
    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        data = self.dataset[idx]

        inputs, images = data
        inputs = {
            "uv": inputs["uv"],
            "intrinsics": inputs['intrinsics'],
            "pose": inputs['pose'],
            "smpl_params": inputs["smpl_params"],
            "frame_encoding_vector": inputs["frame_encoding_vector"],
            "idx": inputs['idx']
        }
        images = {
            "rgb": images["rgb"],
            "img_size": images["img_size"]
        }
        return inputs, images, self.pixel_per_batch, self.total_pixels, idx