File size: 18,408 Bytes
84e8aea e41b635 d401ea1 e41b635 84e8aea e41b635 84e8aea c5c4d95 84e8aea ad4f294 84e8aea 2724bbd 84e8aea d401ea1 84e8aea d0f41ff 84e8aea 31715cb 84e8aea 693d839 abc67bf 3cc458d 52d1f8c abc67bf 52d1f8c abc67bf 1c3f63b abc67bf 693d839 abc67bf 84e8aea 46c381c 84e8aea 3efc835 84e8aea 46c381c 37a9f08 84e8aea 3efc835 84e8aea 09021ee d401ea1 84e8aea 37a9f08 84e8aea 3e0afd9 84e8aea 3e0afd9 84e8aea e41b635 84e8aea e41b635 09021ee e41b635 84e8aea e41b635 84e8aea 37a9f08 e41b635 3e0afd9 e41b635 84e8aea e41b635 d401ea1 3e0afd9 d401ea1 84e8aea d401ea1 84e8aea 09021ee 84e8aea 09021ee 693d839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
from lib.model.v2a import V2A
from lib.model.body_model_params import BodyModelParams
from lib.model.deformer import SMPLDeformer
from lib.model.loss import Loss
from lib.utils.meshing import generate_mesh
from lib.model.deformer import skinning
from lib.utils import utils
from evaluation import compute_ssim, compute_psnr
import pytorch_lightning as pl
import torch.optim as optim
import cv2
import torch
import hydra
import os
import numpy as np
from kaolin.ops.mesh import index_vertices_by_faces
import trimesh
class V2AModel(pl.LightningModule):
def __init__(self, opt, implicit_network: torch.nn.Module, rendering_network: torch.nn.Module) -> None:
super().__init__()
self.opt = opt
num_training_frames = opt.dataset.metainfo.end_frame - opt.dataset.metainfo.start_frame
self.betas_path = os.path.abspath(os.path.join(hydra.utils.get_original_cwd(), 'data', opt.dataset.metainfo.data_dir, 'mean_shape.npy'))
self.gender = opt.dataset.metainfo.gender
self.model = V2A(opt.model, self.betas_path, self.gender, num_training_frames, implicit_network, rendering_network)
self.start_frame = opt.dataset.metainfo.start_frame
self.end_frame = opt.dataset.metainfo.end_frame
self.training_modules = ["model"]
self.N_validation_batches = opt.videos_dataset.valid.N_validation_batches
self.training_indices = list(range(self.start_frame, self.end_frame))
self.body_model_params = BodyModelParams(num_training_frames, model_type='smpl')
self.load_body_model_params()
optim_params = self.body_model_params.param_names
for param_name in optim_params:
self.body_model_params.set_requires_grad(param_name, requires_grad=True)
self.training_modules += ['body_model_params']
self.loss = Loss(opt.model.loss)
def load_body_model_params(self):
body_model_params = {param_name: [] for param_name in self.body_model_params.param_names}
data_root = os.path.abspath(os.path.join(hydra.utils.get_original_cwd(), 'data', self.opt.dataset.metainfo.data_dir))
data_root = hydra.utils.to_absolute_path(data_root)
body_model_params['betas'] = torch.tensor(np.load(os.path.join(data_root, 'mean_shape.npy'))[None], dtype=torch.float32)
body_model_params['global_orient'] = torch.tensor(np.load(os.path.join(data_root, 'poses.npy'))[self.training_indices][:, :3], dtype=torch.float32)
body_model_params['body_pose'] = torch.tensor(np.load(os.path.join(data_root, 'poses.npy'))[self.training_indices] [:, 3:], dtype=torch.float32)
body_model_params['transl'] = torch.tensor(np.load(os.path.join(data_root, 'normalize_trans.npy'))[self.training_indices], dtype=torch.float32)
for param_name in body_model_params.keys():
self.body_model_params.init_parameters(param_name, body_model_params[param_name], requires_grad=False)
def configure_optimizers(self):
params = [{'params': self.model.parameters(), 'lr':self.opt.model.learning_rate}]
params.append({'params': self.body_model_params.parameters(), 'lr':self.opt.model.learning_rate*0.1})
self.optimizer = optim.Adam(params, lr=self.opt.model.learning_rate, eps=1e-8)
self.scheduler = optim.lr_scheduler.MultiStepLR(
self.optimizer, milestones=self.opt.model.sched_milestones, gamma=self.opt.model.sched_factor)
return [self.optimizer], [self.scheduler]
def forward(self, x):
inputs, targets = x # One batch (frame) is passed in x
batch_idx = inputs["idx"]
body_model_params = self.body_model_params(batch_idx)
inputs['smpl_pose'] = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)
inputs['smpl_shape'] = body_model_params['betas']
inputs['smpl_trans'] = body_model_params['transl']
inputs['current_epoch'] = self.current_epoch
model_outputs = self.model(inputs)
return model_outputs
def training_step(self, batch):
inputs, targets = batch
batch_idx = inputs["idx"]
body_model_params = self.body_model_params(batch_idx)
inputs['smpl_pose'] = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)
inputs['smpl_shape'] = body_model_params['betas']
inputs['smpl_trans'] = body_model_params['transl']
inputs['current_epoch'] = self.current_epoch
model_outputs = self.model(inputs)
loss_output = self.loss(model_outputs, targets)
for k, v in loss_output.items():
if k in ["loss"]:
self.log(k, v.item(), prog_bar=True, on_step=True)
else:
self.log(k, v.item(), prog_bar=True, on_step=True)
return loss_output["loss"]
# TODO: This is possibly not necessary during training, but it might be necessary on the outer model for training
def training_epoch_end(self, outputs) -> None:
# Canonical mesh update every 20 epochs
if self.current_epoch != 0 and self.current_epoch % 20 == 0:
cond = {'smpl': torch.zeros(1, 69).float().cuda()}
mesh_canonical = generate_mesh(lambda x: self.query_oc(x, cond), self.model.smpl_server.verts_c[0], point_batch=10000, res_up=2)
self.model.mesh_v_cano = torch.tensor(mesh_canonical.vertices[None], device = self.model.smpl_v_cano.device).float()
self.model.mesh_f_cano = torch.tensor(mesh_canonical.faces.astype(np.int64), device=self.model.smpl_v_cano.device)
self.model.mesh_face_vertices = index_vertices_by_faces(self.model.mesh_v_cano, self.model.mesh_f_cano)
return super().training_epoch_end(outputs)
# TODO: This goes with the generation of the canonical mesh on training_epoch_end, same reasoning, but it's also used in other places down here
def query_oc(self, x, cond, frame_encoding_vector):
x = x.reshape(-1, 3)
mnfld_pred = self.model.implicit_network(x, cond)[:,:,0].reshape(-1,1)
return {'sdf':mnfld_pred}
def query_wc(self, x):
x = x.reshape(-1, 3)
w = self.model.deformer.query_weights(x)
return w
def query_od(self, x, cond, smpl_tfs, smpl_verts):
x = x.reshape(-1, 3)
x_c, _ = self.model.deformer.forward(x, smpl_tfs, return_weights=False, inverse=True, smpl_verts=smpl_verts)
output = self.model.implicit_network(x_c, cond)[0]
sdf = output[:, 0:1]
return {'sdf': sdf}
def get_deformed_mesh_fast_mode(self, verts, smpl_tfs):
verts = torch.tensor(verts).cuda().float()
weights = self.model.deformer.query_weights(verts)
verts_deformed = skinning(verts.unsqueeze(0), weights, smpl_tfs).data.cpu().numpy()[0]
return verts_deformed
# TODO: The validation step is very memory intensive, not allowing to scale during training. It should be optimized to return only the necessary outputs for outer training
# Validation -----------------------------------------------------------------------------
'''This validation is performed on one frame (batch) of the video being processed'''
def validation_step(self, batch, *args, **kwargs):
output = {}
inputs, targets = batch
inputs['current_epoch'] = self.current_epoch
self.model.eval()
body_model_params = self.body_model_params(inputs['image_id'])
inputs['smpl_pose'] = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)
inputs['smpl_shape'] = body_model_params['betas']
inputs['smpl_trans'] = body_model_params['transl']
cond = {'smpl': inputs["smpl_pose"][:, 3:]/np.pi}
frame_encoding_vector = inputs['frame_encoding_vector'][0]
mesh_canonical = generate_mesh(lambda x: self.query_oc(x, cond, frame_encoding_vector), self.model.smpl_server.verts_c[0], point_batch=10000, res_up=3)
mesh_canonical = trimesh.Trimesh(mesh_canonical.vertices, mesh_canonical.faces)
output.update({
'canonical_mesh':mesh_canonical
})
split = utils.split_input(inputs, targets["total_pixels"][0], n_pixels=min(targets['pixel_per_batch'], targets["img_size"][0] * targets["img_size"][1]))
res = []
for s in split:
out = self.model(s)
for k, v in out.items():
try:
out[k] = v.detach()
except:
out[k] = v
res.append({
'rgb_values': out['rgb_values'].detach(),
'normal_values': out['normal_values'].detach(),
'fg_rgb_values': out['fg_rgb_values'].detach(),
})
batch_size = targets['rgb'].shape[0]
model_outputs = utils.merge_output(res, targets["total_pixels"][0], batch_size)
output.update({
"rgb_values": model_outputs["rgb_values"].detach().clone(),
"normal_values": model_outputs["normal_values"].detach().clone(),
"fg_rgb_values": model_outputs["fg_rgb_values"].detach().clone(),
**targets,
})
return output
def validation_step_end(self, batch_parts):
return batch_parts
# TODO: writing the files here should not be necessary and it's only a waste of memory
def validation_epoch_end(self, outputs):
# Writing output files -------------------------------------------------------------------
img_size = outputs[0]["img_size"]
rgb_pred = torch.cat([output["rgb_values"] for output in outputs], dim=0)
rgb_pred = rgb_pred.reshape(*img_size, -1)
fg_rgb_pred = torch.cat([output["fg_rgb_values"] for output in outputs], dim=0)
fg_rgb_pred = fg_rgb_pred.reshape(*img_size, -1)
normal_pred = torch.cat([output["normal_values"] for output in outputs], dim=0)
normal_pred = (normal_pred.reshape(*img_size, -1) + 1) / 2
rgb_gt = torch.cat([output["rgb"] for output in outputs], dim=1).squeeze(0)
rgb_gt = rgb_gt.reshape(*img_size, -1)
if 'normal' in outputs[0].keys():
normal_gt = torch.cat([output["normal"] for output in outputs], dim=1).squeeze(0)
normal_gt = (normal_gt.reshape(*img_size, -1) + 1) / 2
normal = torch.cat([normal_gt, normal_pred], dim=0).cpu().numpy()
else:
normal = torch.cat([normal_pred], dim=0).cpu().numpy()
rgb_comparison = torch.cat([rgb_gt, rgb_pred], dim=0).cpu().numpy()
rgb_comparison = (rgb_comparison * 255).astype(np.uint8) # Return to range [0, 255]
fg_rgb = torch.cat([fg_rgb_pred], dim=0).cpu().numpy()
fg_rgb = (fg_rgb * 255).astype(np.uint8)
normal = (normal * 255).astype(np.uint8)
if self.opt.dataset.metainfo.type == 'test-non-pretrained':
video_directory_path = os.path.join('Video/', self.opt.dataset.metainfo.data_dir, 'non-pretrained/')
else:
video_directory_path = os.path.join('Video/', self.opt.dataset.metainfo.data_dir)
os.makedirs(os.path.join(video_directory_path, 'rendering'), exist_ok=True)
os.makedirs(os.path.join(video_directory_path, 'normal'), exist_ok=True)
os.makedirs(os.path.join(video_directory_path, 'fg_rendering'), exist_ok=True)
canonical_mesh = outputs[0]['canonical_mesh']
canonical_mesh.export(os.path.join(video_directory_path, f"rendering/{self.current_epoch}.ply"))
cv2.imwrite(os.path.join(video_directory_path, f"rendering/{self.current_epoch}.png"), rgb_comparison[:, :, ::-1])
cv2.imwrite(os.path.join(video_directory_path, f"normal/{self.current_epoch}.png"), normal[:, :, ::-1])
cv2.imwrite(os.path.join(video_directory_path, f"fg_rendering/{self.current_epoch}.png"), fg_rgb[:, :, ::-1])
# Computing evaluation metrics -----------------------------------------------------------
rgb_pred_np = rgb_pred.permute(2, 0, 1).cpu().numpy() # Convert from (H, W, C) to (C, H, W)
rgb_gt_np = rgb_gt.permute(2, 0, 1).cpu().numpy()
# Compute metrics
validation_metrics = {
f'ssim_{self.opt.dataset.metainfo.type}': compute_ssim(rgb_gt_np, rgb_pred_np), # Normalized rgb values are passed
f'psnr_{self.opt.dataset.metainfo.type}': compute_psnr(rgb_gt_np, rgb_pred_np) # Normalized rgb values are passed
}
# Log the metrics values
for k, v in validation_metrics.items():
self.log(k, v.item(), prog_bar=True, on_step=False)
return validation_metrics
def test_step(self, batch, *args, **kwargs):
# TODO: This commented part of the code will need to be implemented in the outer model in order to produce the results
inputs, targets, pixel_per_batch, total_pixels, idx = batch
num_splits = (total_pixels + pixel_per_batch -
1) // pixel_per_batch
results = []
scale, smpl_trans, smpl_pose, smpl_shape = torch.split(inputs["smpl_params"], [1, 3, 72, 10], dim=1)
body_model_params = self.body_model_params(inputs['idx'])
smpl_shape = body_model_params['betas'] if body_model_params['betas'].dim() == 2 else body_model_params['betas'].unsqueeze(0)
smpl_trans = body_model_params['transl']
smpl_pose = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)
smpl_outputs = self.model.smpl_server(scale, smpl_trans, smpl_pose, smpl_shape)
smpl_tfs = smpl_outputs['smpl_tfs']
cond = {'smpl': smpl_pose[:, 3:]/np.pi}
mesh_canonical = generate_mesh(lambda x: self.query_oc(x, cond), self.model.smpl_server.verts_c[0], point_batch=10000, res_up=4)
self.model.deformer = SMPLDeformer(betas=np.load(self.betas_path), gender=self.gender, K=7)
verts_deformed = self.get_deformed_mesh_fast_mode(mesh_canonical.vertices, smpl_tfs)
mesh_deformed = trimesh.Trimesh(vertices=verts_deformed, faces=mesh_canonical.faces, process=False)
os.makedirs("test_mask", exist_ok=True)
os.makedirs("test_rendering", exist_ok=True)
os.makedirs("test_fg_rendering", exist_ok=True)
os.makedirs("test_normal", exist_ok=True)
os.makedirs("test_mesh", exist_ok=True)
mesh_canonical.export(f"test_mesh/{int(idx.cpu().numpy()):04d}_canonical.ply")
mesh_deformed.export(f"test_mesh/{int(idx.cpu().numpy()):04d}_deformed.ply")
self.model.deformer = SMPLDeformer(betas=np.load(self.betas_path), gender=self.gender)
for i in range(num_splits):
indices = list(range(i * pixel_per_batch,
min((i + 1) * pixel_per_batch, total_pixels)))
batch_inputs = {"uv": inputs["uv"][:, indices],
"intrinsics": inputs['intrinsics'],
"pose": inputs['pose'],
"smpl_params": inputs["smpl_params"],
"smpl_pose": inputs["smpl_params"][:, 4:76],
"smpl_shape": inputs["smpl_params"][:, 76:],
"smpl_trans": inputs["smpl_params"][:, 1:4],
"idx": inputs["idx"] if 'idx' in inputs.keys() else None}
body_model_params = self.body_model_params(inputs['idx'])
batch_inputs.update({'smpl_pose': torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)})
batch_inputs.update({'smpl_shape': body_model_params['betas']})
batch_inputs.update({'smpl_trans': body_model_params['transl']})
batch_targets = {"rgb": targets["rgb"][:, indices].detach().clone() if 'rgb' in targets.keys() else None,
"img_size": targets["img_size"]}
with torch.no_grad():
model_outputs = self.model(batch_inputs)
results.append({"rgb_values":model_outputs["rgb_values"].detach().clone(),
"fg_rgb_values":model_outputs["fg_rgb_values"].detach().clone(),
"normal_values": model_outputs["normal_values"].detach().clone(),
"acc_map": model_outputs["acc_map"].detach().clone(),
**batch_targets})
img_size = results[0]["img_size"]
rgb_pred = torch.cat([result["rgb_values"] for result in results], dim=0)
rgb_pred = rgb_pred.reshape(*img_size, -1)
fg_rgb_pred = torch.cat([result["fg_rgb_values"] for result in results], dim=0)
fg_rgb_pred = fg_rgb_pred.reshape(*img_size, -1)
normal_pred = torch.cat([result["normal_values"] for result in results], dim=0)
normal_pred = (normal_pred.reshape(*img_size, -1) + 1) / 2
pred_mask = torch.cat([result["acc_map"] for result in results], dim=0)
pred_mask = pred_mask.reshape(*img_size, -1)
if results[0]['rgb'] is not None:
rgb_gt = torch.cat([result["rgb"] for result in results], dim=1).squeeze(0)
rgb_gt = rgb_gt.reshape(*img_size, -1)
rgb = torch.cat([rgb_gt, rgb_pred], dim=0).cpu().numpy()
else:
rgb = torch.cat([rgb_pred], dim=0).cpu().numpy()
if 'normal' in results[0].keys():
normal_gt = torch.cat([result["normal"] for result in results], dim=1).squeeze(0)
normal_gt = (normal_gt.reshape(*img_size, -1) + 1) / 2
normal = torch.cat([normal_gt, normal_pred], dim=0).cpu().numpy()
else:
normal = torch.cat([normal_pred], dim=0).cpu().numpy()
rgb = (rgb * 255).astype(np.uint8)
fg_rgb = torch.cat([fg_rgb_pred], dim=0).cpu().numpy()
fg_rgb = (fg_rgb * 255).astype(np.uint8)
normal = (normal * 255).astype(np.uint8)
cv2.imwrite(f"test_mask/{int(idx.cpu().numpy()):04d}.png", pred_mask.cpu().numpy() * 255)
cv2.imwrite(f"test_rendering/{int(idx.cpu().numpy()):04d}.png", rgb[:, :, ::-1])
cv2.imwrite(f"test_normal/{int(idx.cpu().numpy()):04d}.png", normal[:, :, ::-1])
cv2.imwrite(f"test_fg_rendering/{int(idx.cpu().numpy()):04d}.png", fg_rgb[:, :, ::-1])
|