AGen / AGen_train.py
leobcc
Debugging baseline, implementing validation
d401ea1
from AGen_model import AGen_model
from videos_dataset import create_video_dataloader
import hydra
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
import wandb
import os
import glob
import torch
@hydra.main(config_path="confs", config_name="base")
def main(opt):
pl.seed_everything(42)
print("Working dir:", os.getcwd())
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath="checkpoints/",
filename="{epoch:04d}-{loss}",
save_on_train_epoch_end=True,
save_last=True)
wandb.require("service")
logger = WandbLogger(project=opt.project_name, name=f"{opt.project_name}")
# Set the CUDA_VISIBLE_DEVICES environment variable
gpu_ids_str = ','.join(map(str, opt.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids_str
# The trainer is set up using a ddp strategy, meaning each instance of the model processes one batch (one video) in parallel
AGen_trainer = pl.Trainer(
gpus=torch.cuda.device_count(),
accelerator="gpu",
strategy="ddp",
callbacks=[checkpoint_callback],
max_epochs=8000,
check_val_every_n_epoch=5,
logger=logger,
log_every_n_steps=1,
num_sanity_val_steps=0,
)
model = AGen_model(opt)
trainset = create_video_dataloader(opt.videos_dataset.train)
validset = create_video_dataloader(opt.videos_dataset.valid)
if opt.model.is_continue == True:
checkpoint = sorted(glob.glob("checkpoints/*.ckpt"))[-1]
AGen_trainer.fit(model, trainset, validset, ckpt_path=checkpoint)
else:
AGen_trainer.fit(model, trainset, validset)
if __name__ == '__main__':
main()