Spaces:
Running
Running
File size: 10,280 Bytes
665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 1c43e67 665cc97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Architecture Documentation
## System Overview
The Deep-Research PDF Field Extractor is a multi-agent system designed to extract structured data from biotech-related PDFs. The system uses Azure Document Intelligence for document processing and Azure OpenAI for intelligent field extraction.
## Core Architecture
### Multi-Agent Design
The system follows a multi-agent architecture where each agent has a specific responsibility:
```
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β PDFAgent β β TableAgent β β IndexAgent β
β β β β β β
β β’ PDF Text βββββΆβ β’ Table βββββΆβ β’ Semantic β
β Extraction β β Processing β β Indexing β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β
βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
βUniqueIndices β βUniqueIndices β βFieldMapper β
βCombinator β βLoopAgent β βAgent β
β β β β β β
β β’ Extract βββββΆβ β’ Loop through β β β’ Extract β
β combinations β β combinations β β individual β
β β β β’ Add fields β β fields β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
```
### Execution Flow
#### Original Strategy Flow
```
1. PDFAgent β Extract text from PDF
2. TableAgent β Process tables with Azure DI
3. IndexAgent β Create semantic search index
4. ForEachField β Iterate through fields
5. FieldMapperAgent β Extract each field value
```
#### Unique Indices Strategy Flow
```
1. PDFAgent β Extract text from PDF
2. TableAgent β Process tables with Azure DI
3. UniqueIndicesCombinator β Extract unique combinations
4. UniqueIndicesLoopAgent β Extract additional fields for each combination
```
## Agent Details
### PDFAgent
- **Purpose**: Extract text content from PDF files
- **Technology**: PyMuPDF (fitz)
- **Output**: Raw text content
- **Error Handling**: Graceful handling of corrupted PDFs
### TableAgent
- **Purpose**: Process tables using Azure Document Intelligence
- **Technology**: Azure DI Layout Analysis
- **Features**:
- Table structure preservation
- Rowspan/colspan handling
- HTML table generation for debugging
- **Output**: Processed table data
### UniqueIndicesCombinator
- **Purpose**: Extract unique combinations of specified indices
- **Input**: Document text, unique indices descriptions
- **LLM Prompt**: Structured prompt for combination extraction
- **Output**: JSON array of unique combinations
- **Cost Tracking**: Tracks input/output tokens
### UniqueIndicesLoopAgent
- **Purpose**: Extract additional fields for each unique combination
- **Input**: Unique combinations, field descriptions
- **Process**: Loops through each combination
- **LLM Calls**: One call per combination
- **Error Handling**: Continues with partial failures
- **Output**: Complete data with all fields
### FieldMapperAgent
- **Purpose**: Extract individual field values
- **Strategies**:
- Page-by-page analysis
- Semantic search fallback
- Unique indices strategy
- **Features**: Context-aware extraction
- **Output**: Field values with confidence scores
### IndexAgent
- **Purpose**: Create semantic search indices
- **Technology**: Azure OpenAI Embeddings
- **Features**: Chunk-based indexing
- **Output**: Searchable document index
## Services
### LLMClient
```python
class LLMClient:
def __init__(self, settings):
# Azure OpenAI configuration
self._deployment = settings.AZURE_OPENAI_DEPLOYMENT
self._max_retries = settings.LLM_MAX_RETRIES
self._base_delay = settings.LLM_BASE_DELAY
def responses(self, prompt, **kwargs):
# Retry logic with exponential backoff
# Cost tracking integration
# Error handling
```
**Key Features:**
- Retry logic with exponential backoff
- Cost tracking integration
- Error classification (retryable vs non-retryable)
- Jitter to prevent thundering herd
### CostTracker
```python
class CostTracker:
def __init__(self):
self.llm_calls: List[LLMCall] = []
self.current_file_costs = {}
self.total_costs = {}
def add_llm_tokens(self, input_tokens, output_tokens, description):
# Track individual LLM calls
# Calculate costs
# Store detailed information
```
**Key Features:**
- Individual call tracking
- Cost calculation based on Azure pricing
- Detailed breakdown by operation
- Session and total cost tracking
### AzureDIService
```python
class AzureDIService:
def extract_tables(self, pdf_bytes):
# Azure DI Layout Analysis
# Table structure preservation
# HTML debugging output
```
**Key Features:**
- Layout analysis for complex documents
- Table structure preservation
- Debug output generation
- Error handling for DI operations
## Data Flow
### Context Management
The system uses a context dictionary to pass data between agents:
```python
ctx = {
"pdf_file": pdf_file,
"text": extracted_text,
"fields": field_list,
"unique_indices": unique_indices,
"field_descriptions": field_descriptions,
"cost_tracker": cost_tracker,
"results": [],
"strategy": strategy
}
```
### Result Processing
Results are processed through multiple stages:
1. **Raw Extraction**: LLM responses in JSON format
2. **Validation**: JSON parsing and structure validation
3. **Flattening**: Convert to tabular format
4. **DataFrame**: Final structured output
## Error Handling Strategy
### Retry Logic
```python
def _should_retry(self, exception) -> bool:
# Retry on 5xx errors
if hasattr(exception, 'status_code'):
return exception.status_code >= 500
# Retry on connection errors
return any(error in str(exception) for error in ['Timeout', 'Connection'])
```
### Graceful Degradation
- Continue processing with partial failures
- Return null values for failed extractions
- Log detailed error information
- Maintain cost tracking during failures
### Error Classification
- **Retryable**: 503, 500, connection timeouts
- **Non-retryable**: 400, 401, validation errors
- **Fatal**: Configuration errors, missing dependencies
## Performance Considerations
### Optimization Strategies
1. **Parallel Processing**: Independent field extraction
2. **Caching**: Session state for field descriptions
3. **Batching**: Group similar operations
4. **Early Termination**: Stop on critical failures
### Resource Management
- **Memory**: Efficient text processing
- **API Limits**: Respect Azure rate limits
- **Cost Control**: Detailed tracking and alerts
- **Timeout Handling**: Configurable timeouts
## Security
### Data Protection
- No persistent storage of sensitive data
- Secure API key management
- Session-based data handling
- Log sanitization
### Access Control
- Environment variable configuration
- API key validation
- Error message sanitization
## Monitoring and Observability
### Logging Strategy
```python
# Structured logging with levels
logger.info(f"Processing {len(combinations)} combinations")
logger.debug(f"LLM response: {response[:200]}...")
logger.error(f"Failed to extract field: {field}")
```
### Metrics Collection
- LLM call counts and durations
- Token usage and costs
- Success/failure rates
- Processing times
### Debug Information
- Detailed execution traces
- Cost breakdown tables
- Error context and stack traces
- Performance metrics
## Configuration Management
### Settings Structure
```python
class Settings(BaseSettings):
# Azure OpenAI
AZURE_OPENAI_ENDPOINT: str
AZURE_OPENAI_API_KEY: str
AZURE_OPENAI_DEPLOYMENT: str
# Azure Document Intelligence
AZURE_DI_ENDPOINT: str
AZURE_DI_KEY: str
# Retry Configuration
LLM_MAX_RETRIES: int = 5
LLM_BASE_DELAY: float = 1.0
LLM_MAX_DELAY: float = 60.0
```
### Environment Variables
- `.env` file support
- Environment variable override
- Validation and defaults
- Secure key management
## Testing Strategy
### Unit Tests
- Individual agent testing
- Service layer testing
- Mock external dependencies
- Cost tracking validation
### Integration Tests
- End-to-end workflows
- Error scenario testing
- Performance benchmarking
- Cost accuracy validation
### Test Coverage
- Core functionality: 90%+
- Error handling: 100%
- Cost tracking: 100%
- Retry logic: 100%
## Deployment
### Requirements
- Python 3.9+
- Azure OpenAI access
- Azure Document Intelligence access
- Streamlit for UI
### Dependencies
```
azure-ai-documentintelligence
openai
streamlit
pandas
pymupdf
pydantic-settings
```
### Environment Setup
1. Install dependencies
2. Configure environment variables
3. Set up Azure resources
4. Test connectivity
5. Deploy application
## Future Enhancements
### Planned Features
- **Batch Processing**: Multiple document processing
- **Custom Models**: Domain-specific extraction
- **Advanced Caching**: Redis-based caching
- **API Endpoints**: REST API for integration
- **Real-time Processing**: Streaming document processing
### Scalability Improvements
- **Microservices**: Agent separation
- **Queue System**: Asynchronous processing
- **Load Balancing**: Multiple instances
- **Database Integration**: Persistent storage
### Performance Optimizations
- **Vector Search**: Enhanced semantic search
- **Model Optimization**: Smaller, faster models
- **Parallel Processing**: Multi-threaded extraction
- **Memory Optimization**: Efficient data structures |