import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC from sklearn.metrics import classification_report import joblib df = pd.read_csv('cleaned_data.csv') X = df['cleaned_text'] y = df['transaction_type'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) vectorizer = TfidfVectorizer() X_train_vec = vectorizer.fit_transform(X_train) X_test_vec = vectorizer.transform(X_test) models = { "Naive Bayes": MultinomialNB(), "Logistic Regression": LogisticRegression(max_iter=1000), "SVM": LinearSVC() } best_model = None best_f1 = 0 for name, model in models.items(): model.fit(X_train_vec, y_train) preds = model.predict(X_test_vec) report = classification_report(y_test, preds, output_dict=True) print(f"\n{name}\n", classification_report(y_test, preds)) if report['weighted avg']['f1-score'] > best_f1: best_f1 = report['weighted avg']['f1-score'] best_model = model # Save best model and vectorizer joblib.dump(best_model, 'final_model.pkl') joblib.dump(vectorizer, 'tfidf_vectorizer.pkl')