Spaces:
Runtime error
Runtime error
Lukas Folle
commited on
Commit
·
70583d3
1
Parent(s):
29f1be9
nit: fixed formatting
Browse files- DummyModel.py +9 -4
- Model.py +8 -2
- app.py +26 -10
- backend.py +2 -4
- entrypoint.py +5 -7
DummyModel.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import torch.nn
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def load_dummy_model(DEBUG):
|
| 6 |
model = DummyModel()
|
| 7 |
if not DEBUG:
|
| 8 |
-
file_path = hf_hub_download(
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
model.load_state_dict(torch.load(file_path))
|
| 11 |
return model
|
| 12 |
|
|
@@ -15,8 +20,8 @@ class DummyModel(torch.nn.Module):
|
|
| 15 |
def __init__(self):
|
| 16 |
super().__init__()
|
| 17 |
|
| 18 |
-
def forward(self, x:list):
|
| 19 |
return torch.softmax(torch.rand(len(x), 5), 1), 0
|
| 20 |
|
| 21 |
-
def __call__(self, x:list):
|
| 22 |
return self.forward(x)
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import os
|
| 3 |
import torch.nn
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
|
| 6 |
|
| 7 |
def load_dummy_model(DEBUG):
|
| 8 |
model = DummyModel()
|
| 9 |
if not DEBUG:
|
| 10 |
+
file_path = hf_hub_download(
|
| 11 |
+
"lfolle/DeepNAPSIModel",
|
| 12 |
+
"dummy_model.pth",
|
| 13 |
+
use_auth_token=os.environ["DeepNAPSIModel"],
|
| 14 |
+
)
|
| 15 |
model.load_state_dict(torch.load(file_path))
|
| 16 |
return model
|
| 17 |
|
|
|
|
| 20 |
def __init__(self):
|
| 21 |
super().__init__()
|
| 22 |
|
| 23 |
+
def forward(self, x: list):
|
| 24 |
return torch.softmax(torch.rand(len(x), 5), 1), 0
|
| 25 |
|
| 26 |
+
def __call__(self, x: list):
|
| 27 |
return self.forward(x)
|
Model.py
CHANGED
|
@@ -9,8 +9,14 @@ class Model:
|
|
| 9 |
base = r"C:\Users\follels\Documents\hand-ki-model-weights\DeepNAPSIModel\inference_checkpoints_v1"
|
| 10 |
file_paths = [os.path.join(base, f"version_{v}") for v in range(10, 15)]
|
| 11 |
else:
|
| 12 |
-
file_paths = [
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
self.inference = Inference(file_paths)
|
| 15 |
|
| 16 |
def predict(self, x):
|
|
|
|
| 9 |
base = r"C:\Users\follels\Documents\hand-ki-model-weights\DeepNAPSIModel\inference_checkpoints_v1"
|
| 10 |
file_paths = [os.path.join(base, f"version_{v}") for v in range(10, 15)]
|
| 11 |
else:
|
| 12 |
+
file_paths = [
|
| 13 |
+
hf_hub_download(
|
| 14 |
+
"lfolle/DeepNAPSIModel",
|
| 15 |
+
f"version_{v}.ckpt",
|
| 16 |
+
use_auth_token=os.environ["DeepNAPSIModel"],
|
| 17 |
+
)
|
| 18 |
+
for v in [10, 11, 12, 13, 14]
|
| 19 |
+
]
|
| 20 |
self.inference = Inference(file_paths)
|
| 21 |
|
| 22 |
def predict(self, x):
|
app.py
CHANGED
|
@@ -1,7 +1,4 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import pip
|
| 3 |
import gradio as gr
|
| 4 |
-
from PIL import Image
|
| 5 |
|
| 6 |
from backend import Infer
|
| 7 |
|
|
@@ -9,7 +6,11 @@ from backend import Infer
|
|
| 9 |
DEBUG = False
|
| 10 |
|
| 11 |
infer = Infer(DEBUG)
|
| 12 |
-
example_image_path = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
outputs = [
|
| 15 |
gr.Image(label="Thumb"),
|
|
@@ -28,16 +29,27 @@ outputs = [
|
|
| 28 |
with gr.Blocks(analytics_enabled=False, title="DeepNAPSI") as demo:
|
| 29 |
with gr.Column():
|
| 30 |
gr.Markdown("## Welcome to the DeepNAPSI application!")
|
| 31 |
-
gr.Markdown(
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
with gr.Column():
|
| 35 |
with gr.Row():
|
| 36 |
with gr.Column():
|
| 37 |
with gr.Row():
|
| 38 |
image_input = gr.Image()
|
| 39 |
-
example_images = gr.Examples(
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
with gr.Row():
|
| 42 |
image_button = gr.Button("Predict NAPSI")
|
| 43 |
with gr.Row():
|
|
@@ -59,4 +71,8 @@ with gr.Blocks(analytics_enabled=False, title="DeepNAPSI") as demo:
|
|
| 59 |
outputs[10].render()
|
| 60 |
image_button.click(infer.predict, inputs=image_input, outputs=outputs)
|
| 61 |
|
| 62 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
from backend import Infer
|
| 4 |
|
|
|
|
| 6 |
DEBUG = False
|
| 7 |
|
| 8 |
infer = Infer(DEBUG)
|
| 9 |
+
example_image_path = [
|
| 10 |
+
"assets/example_1.jpg",
|
| 11 |
+
"assets/example_2.jpg",
|
| 12 |
+
"assets/example_3.jpg",
|
| 13 |
+
]
|
| 14 |
|
| 15 |
outputs = [
|
| 16 |
gr.Image(label="Thumb"),
|
|
|
|
| 29 |
with gr.Blocks(analytics_enabled=False, title="DeepNAPSI") as demo:
|
| 30 |
with gr.Column():
|
| 31 |
gr.Markdown("## Welcome to the DeepNAPSI application!")
|
| 32 |
+
gr.Markdown(
|
| 33 |
+
"Upload an image of the one hand and click **Predict NAPSI** to see the output."
|
| 34 |
+
)
|
| 35 |
+
gr.Markdown(
|
| 36 |
+
"*Note*: Make sure there are no identifying information present in the image. The prediction can take up to 4.5 minutes."
|
| 37 |
+
)
|
| 38 |
+
gr.Markdown(
|
| 39 |
+
"*Note*: This is not a medical product and cannot be used for a patient diagnosis in any way."
|
| 40 |
+
)
|
| 41 |
with gr.Column():
|
| 42 |
with gr.Row():
|
| 43 |
with gr.Column():
|
| 44 |
with gr.Row():
|
| 45 |
image_input = gr.Image()
|
| 46 |
+
example_images = gr.Examples(
|
| 47 |
+
example_image_path,
|
| 48 |
+
image_input,
|
| 49 |
+
outputs,
|
| 50 |
+
fn=infer.predict,
|
| 51 |
+
cache_examples=True,
|
| 52 |
+
)
|
| 53 |
with gr.Row():
|
| 54 |
image_button = gr.Button("Predict NAPSI")
|
| 55 |
with gr.Row():
|
|
|
|
| 71 |
outputs[10].render()
|
| 72 |
image_button.click(infer.predict, inputs=image_input, outputs=outputs)
|
| 73 |
|
| 74 |
+
demo.launch(
|
| 75 |
+
share=True if DEBUG else False,
|
| 76 |
+
enable_queue=True,
|
| 77 |
+
favicon_path="assets/favicon-32x32.png",
|
| 78 |
+
)
|
backend.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
import torch
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
-
from huggingface_hub import hf_hub_download
|
| 5 |
from nail_detection.main import get_nails
|
| 6 |
|
| 7 |
-
from DummyModel import load_dummy_model
|
| 8 |
from Model import Model
|
| 9 |
|
| 10 |
|
| 11 |
-
class Infer
|
| 12 |
def __init__(self, DEBUG):
|
| 13 |
# self.model = load_dummy_model(DEBUG)
|
| 14 |
self.model = Model(DEBUG)
|
|
@@ -22,7 +20,7 @@ class Infer():
|
|
| 22 |
predictions.append(-1)
|
| 23 |
predictions.append("-1")
|
| 24 |
else:
|
| 25 |
-
model_prediction,
|
| 26 |
model_prediction = model_prediction[0]
|
| 27 |
napsi_predictions = torch.argmax(model_prediction, 1)
|
| 28 |
napsi_sum = int(napsi_predictions.sum().detach().cpu())
|
|
|
|
| 1 |
import torch
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from nail_detection.main import get_nails
|
| 5 |
|
|
|
|
| 6 |
from Model import Model
|
| 7 |
|
| 8 |
|
| 9 |
+
class Infer:
|
| 10 |
def __init__(self, DEBUG):
|
| 11 |
# self.model = load_dummy_model(DEBUG)
|
| 12 |
self.model = Model(DEBUG)
|
|
|
|
| 20 |
predictions.append(-1)
|
| 21 |
predictions.append("-1")
|
| 22 |
else:
|
| 23 |
+
model_prediction, _ = self.model(nails)
|
| 24 |
model_prediction = model_prediction[0]
|
| 25 |
napsi_predictions = torch.argmax(model_prediction, 1)
|
| 26 |
napsi_sum = int(napsi_predictions.sum().detach().cpu())
|
entrypoint.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
-
import shutil
|
| 4 |
import subprocess
|
| 5 |
from huggingface_hub import Repository
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
|
| 13 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "repos/hand-ki-model/"])
|
| 14 |
-
import app
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
|
|
|
| 3 |
import subprocess
|
| 4 |
from huggingface_hub import Repository
|
| 5 |
|
| 6 |
+
Repository(
|
| 7 |
+
"repos/hand-ki-model",
|
| 8 |
+
f"https://oauth2:{os.getenv('HANDKIGIT5')}@git5.cs.fau.de/folle/hand-ki-model.git",
|
| 9 |
+
use_auth_token=os.getenv(""),
|
| 10 |
+
)
|
| 11 |
|
| 12 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "repos/hand-ki-model/"])
|
|
|