File size: 11,625 Bytes
ff78ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# coding=utf-8
# Copyright 2021 The IDEA Authors. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# from collections import defaultdict
from typing import List, Tuple, Dict
import argparse
import numpy as np
from transformers import PreTrainedTokenizer

from .item_encoder import entity_based_tokenize, get_entity_indices
from .dataset_utils import get_choice


class ItemDecoder(object):
    """ Decoder

    Args:
        tokenizer (PreTrainedTokenizer): tokenizer
        args (TrainingArgumentsIEStd): arguments
    """
    def __init__(self,
                 tokenizer: PreTrainedTokenizer,
                 args: argparse.Namespace) -> None:
        self.tokenizer = tokenizer
        self.max_length = args.max_length
        self.threshold_entity = args.threshold_ent
        self.threshold_rel = args.threshold_rel
        self.entity_multi_label = args.entity_multi_label
        self.relation_multi_label = args.relation_multi_label

    def extract_entity_index(self,
                             entity_logits: np.ndarray,
                             ) -> List[Tuple[int, int]]:
        """ extract entity index

        Args:
            entity_logits (np.ndarray): entity_logits

        Returns:
            List[Tuple[int, int]]: result
        """

        l, _, d = entity_logits.shape
        result = []
        for i in range(l):
            for j in range(i, l):
                if self.entity_multi_label:
                    for k in range(d):
                        entity_score = float(entity_logits[i, j, k])
                        if entity_score > self.threshold_entity:
                            result.append((i, j, k, entity_score))

                else:
                    k = np.argmax(entity_logits[i, j])
                    entity_score = float(entity_logits[i, j, k])
                    if entity_score > self.threshold_entity:
                        result.append((i, j, k, entity_score))

        return result

    @staticmethod
    def extract_entity(text: str,
                       entity_idx: List[int],
                       entity_type: str,
                       entity_score: float,
                       text_start_id: int,
                       offset_mapping: List[List[int]]) -> dict:
        """ extract entity

        Args:
            text (str): text
            entity_idx (List[int]): entity indices
            entity_type (str): entity type
            entity_score (float): entity score
            text_start_id (int): text_start_id
            offset_mapping (List[List[int]]): offset mapping

        Returns:
            dict: entity
        """
        entity_start, entity_end = entity_idx[0] - text_start_id, entity_idx[1] - text_start_id

        start_split = offset_mapping[entity_start] if 0 <= entity_start < len(offset_mapping) else []
        end_split = offset_mapping[entity_end] if 0 <= entity_end < len(offset_mapping) else []

        if not start_split or not end_split:
            return None

        start_idx, end_idx = start_split[0], end_split[-1]
        entity_text = text[start_idx: end_idx]

        if not entity_text:
            return None

        entity = {
            "entity_text": entity_text,
            "entity_type": entity_type,
            "score": entity_score,
            "entity_index": [start_idx, end_idx]
        }

        return entity

    def decode_ner(self,
                   text: str,
                   choice: List[str],
                   sample_span_logits: np.ndarray,
                   offset_mapping: List[List[int]]
                  ) -> List[dict]:
        """ NER decode

        Args:
            text (str): text
            choice (List[str]): choice
            sample_span_logits (np.ndarray): sample span_logits
            offset_mapping (List[List[int]]): offset mapping


        Returns:
            List[dict]: decoded entity list
        """
        entity_list = []

        entity_idx_list = self.extract_entity_index(sample_span_logits)

        for entity_start, entity_end, entity_type_idx, entity_score in entity_idx_list:

            entity = self.extract_entity(text,
                                         [entity_start, entity_end],
                                         choice[entity_type_idx],
                                         entity_score,
                                         text_start_id=1,
                                         offset_mapping=offset_mapping)

            if entity is None:
                continue

            if entity not in entity_list:
                entity_list.append(entity)

        return entity_list

    def decode_spo(self,
                   text: str,
                   choice: List[List[str]],
                   sample_span_logits: np.ndarray,
                   offset_mapping: List[List[int]]) -> tuple:
        """ SPO decode

        Args:
            text (str): text
            choice (List[List[str]]): choice
            sample_span_logits (np.ndarray): sample span_logits
            offset_mapping (List[List[int]): offset mapping

        Returns:
            List[dict]: decoded spo list
            List[dict]: decoded entity list
        """
        spo_list = []
        entity_list = []

        choice_ent, choice_rel, choice_head, choice_tail, entity2rel = get_choice(choice)

        entity_logits = sample_span_logits[:, :, : len(choice_ent)] # (seq_len, seq_len, num_entity)
        relation_logits = sample_span_logits[:, :, len(choice_ent): ] # (seq_len, seq_len, num_relation)

        entity_idx_list = self.extract_entity_index(entity_logits)

        head_list = []
        tail_list = []
        for entity_start, entity_end, entity_type_idx, entity_score in entity_idx_list:

            entity_type = choice_ent[entity_type_idx]

            entity = self.extract_entity(text,
                                         [entity_start, entity_end],
                                         entity_type,
                                         entity_score,
                                         text_start_id=1,
                                         offset_mapping=offset_mapping)

            if entity is None:
                continue

            if entity_type in choice_head:
                head_list.append((entity_start, entity_end, entity_type, entity))
            if entity_type in choice_tail:
                tail_list.append((entity_start, entity_end, entity_type, entity))

        for head_start, head_end, subject_type, subject_dict in head_list:
            for tail_start, tail_end, object_type, object_dict in tail_list:

                if subject_dict == object_dict:
                    continue

                if (subject_type, object_type) not in entity2rel.keys():
                    continue

                relation_candidates = entity2rel[subject_type, object_type]
                rel_idx = [choice_rel.index(r) for r in relation_candidates]

                so_rel_logits = relation_logits[:, :, rel_idx]

                if self.relation_multi_label:
                    for idx, predicate in enumerate(relation_candidates):
                        rel_score = so_rel_logits[head_start, tail_start, idx] + \
                                    so_rel_logits[head_end, tail_end, idx]
                        predicate_score = float(rel_score / 2)

                        if predicate_score <= self.threshold_rel:
                            continue

                        if subject_dict not in entity_list:
                            entity_list.append(subject_dict)
                        if object_dict not in entity_list:
                            entity_list.append(object_dict)

                        spo = {
                            "predicate": predicate,
                            "score": predicate_score,
                            "subject": subject_dict,
                            "object": object_dict,
                        }

                        if spo not in spo_list:
                            spo_list.append(spo)

                else:

                    hh_idx = np.argmax(so_rel_logits[head_start, head_end])
                    tt_idx = np.argmax(so_rel_logits[tail_start, tail_end])
                    hh_score = so_rel_logits[head_start, tail_start, hh_idx] + so_rel_logits[head_end, tail_end, hh_idx]
                    tt_score = so_rel_logits[head_start, tail_start, tt_idx] + so_rel_logits[head_end, tail_end, tt_idx]

                    predicate = relation_candidates[hh_idx] if hh_score > tt_score else relation_candidates[tt_idx]

                    predicate_score = float(max(hh_score, tt_score) / 2)

                    if predicate_score <= self.threshold_rel:
                        continue

                    if subject_dict not in entity_list:
                        entity_list.append(subject_dict)
                    if object_dict not in entity_list:
                        entity_list.append(object_dict)

                    spo = {
                        "predicate": predicate,
                        "score": predicate_score,
                        "subject": subject_dict,
                        "object": object_dict,
                    }

                    if spo not in spo_list:
                        spo_list.append(spo)

        return spo_list, entity_list

    def decode(self,
               item: Dict,
               span_logits: np.ndarray,
               label_mask:  np.ndarray,
               ):
        """ decode

        Args:
            task (str): task name
            choice (list): choice
            text (str): text
            span_logits (np.ndarray): sample span_logits
            label_mask (np.ndarray): label_mask

        Raises:
            NotImplementedError: raised if task name is not supported

        Returns:
            List[dict]: decoded entity list
            List[dict]: decoded spo list
        """
        task, choice, text = item["task"], item["choice"], item["text"]
        entity_indices = get_entity_indices(item.get("entity_list", []), item.get("spo_list", []))
        _, offset_mapping = entity_based_tokenize(text, self.tokenizer, entity_indices,
                                                  return_offsets_mapping=True)

        assert span_logits.shape == label_mask.shape

        span_logits = span_logits + (label_mask - 1) * 100000

        spo_list = []
        entity_list = []

        if task in {"实体识别", "抽取任务"}:
            entity_list = self.decode_ner(text,
                                          choice,
                                          span_logits,
                                          offset_mapping)

        elif task in {"关系抽取"}:
            spo_list, entity_list = self.decode_spo(text,
                                                    choice,
                                                    span_logits,
                                                    offset_mapping)

        else:
            raise NotImplementedError

        return entity_list, spo_list