Spaces:
Runtime error
Runtime error
File size: 10,830 Bytes
a43a833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import gradio as gr
import requests
import json
import os
import time
import threading
import logging
from typing import List, Dict, Any, Optional
from datetime import datetime
import asyncio
import subprocess
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(**name**)
class OllamaManager:
def **init**(self, base_url: str = “http://localhost:11434”):
self.base_url = base_url
self.available_models = []
self.current_model = None
```
def wait_for_ollama(self, timeout: int = 60) -> bool:
"""Wait for Ollama service to be ready"""
start_time = time.time()
while time.time() - start_time < timeout:
try:
response = requests.get(f"{self.base_url}/api/tags", timeout=5)
if response.status_code == 200:
logger.info("Ollama service is ready")
return True
except requests.RequestException:
time.sleep(2)
return False
def list_models(self) -> List[str]:
"""Get list of available models"""
try:
response = requests.get(f"{self.base_url}/api/tags")
if response.status_code == 200:
data = response.json()
self.available_models = [model["name"] for model in data.get("models", [])]
return self.available_models
return []
except Exception as e:
logger.error(f"Error listing models: {e}")
return []
def pull_model(self, model_name: str) -> bool:
"""Pull a model from Ollama registry"""
try:
logger.info(f"Pulling model: {model_name}")
response = requests.post(
f"{self.base_url}/api/pull",
json={"name": model_name},
stream=True
)
for line in response.iter_lines():
if line:
data = json.loads(line.decode('utf-8'))
if data.get("status") == "success":
logger.info(f"Successfully pulled model: {model_name}")
return True
elif "error" in data:
logger.error(f"Error pulling model: {data['error']}")
return False
return True
except Exception as e:
logger.error(f"Error pulling model {model_name}: {e}")
return False
def chat_with_model(self, model_name: str, messages: List[Dict], temperature: float = 0.7) -> str:
"""Chat with an Ollama model"""
try:
# Convert messages to Ollama format
prompt = self._format_messages(messages)
response = requests.post(
f"{self.base_url}/api/generate",
json={
"model": model_name,
"prompt": prompt,
"temperature": temperature,
"stream": False
},
timeout=120
)
if response.status_code == 200:
data = response.json()
return data.get("response", "No response received")
else:
return f"Error: HTTP {response.status_code}"
except Exception as e:
logger.error(f"Error chatting with model: {e}")
return f"Error: {str(e)}"
def _format_messages(self, messages: List[Dict]) -> str:
"""Format conversation messages for Ollama"""
formatted = ""
for msg in messages:
role = msg.get("role", "user")
content = msg.get("content", "")
if role == "user":
formatted += f"User: {content}\n"
elif role == "assistant":
formatted += f"Assistant: {content}\n"
formatted += "Assistant: "
return formatted
```
class AIAssistant:
def **init**(self):
self.ollama = OllamaManager()
self.conversation_history = []
self.current_model = “llama3.1:8b” # Default model
```
# Wait for Ollama and setup models
self._initialize_models()
def _initialize_models(self):
"""Initialize Ollama and pull default models"""
if self.ollama.wait_for_ollama():
# Try to pull some popular models
models_to_pull = [
"llama3.1:8b",
"codellama:7b",
"mistral:7b"
]
for model in models_to_pull:
if self.ollama.pull_model(model):
if not self.current_model or model == "llama3.1:8b":
self.current_model = model
break
def get_available_models(self):
"""Get list of available models"""
return self.ollama.list_models()
def chat(self, message: str, history: List, model: str = None, temperature: float = 0.7):
"""Main chat function"""
if not message.strip():
return history, ""
model = model or self.current_model
if not model:
return history + [[message, "No model available. Please wait for model to load."]], ""
# Add user message to history
history.append([message, ""])
# Prepare conversation context
context_messages = []
for h in history[-10:]: # Last 10 exchanges
if h[0]: # User message
context_messages.append({"role": "user", "content": h[0]})
if h[1]: # Assistant message
context_messages.append({"role": "assistant", "content": h[1]})
# Get AI response
try:
response = self.ollama.chat_with_model(model, context_messages, temperature)
history[-1][1] = response
except Exception as e:
history[-1][1] = f"Error: {str(e)}"
return history, ""
def clear_chat(self):
"""Clear conversation history"""
self.conversation_history = []
return []
def get_model_info(self, model_name: str):
"""Get information about a model"""
try:
response = requests.post(
f"{self.ollama.base_url}/api/show",
json={"name": model_name}
)
if response.status_code == 200:
return response.json()
return {"error": "Model not found"}
except Exception as e:
return {"error": str(e)}
```
# Initialize the AI assistant
assistant = AIAssistant()
def create_interface():
“”“Create the Gradio interface”””
```
with gr.Blocks(title="X - AI Assistant", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# 🤖 X - AI Assistant Space
Welcome to the X AI Assistant! This space provides access to various AI models through Ollama.
**Features:**
- Chat with different AI models
- Adjustable temperature settings
- Model management
- Conversation history
""")
with gr.Tab("💬 Chat"):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
container=False,
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("### Settings")
model_dropdown = gr.Dropdown(
choices=assistant.get_available_models(),
value=assistant.current_model,
label="Model",
interactive=True
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
refresh_models_btn = gr.Button("Refresh Models")
with gr.Tab("🔧 Model Management"):
with gr.Column():
gr.Markdown("### Available Models")
model_list = gr.DataFrame(
headers=["Model Name", "Status"],
wrap=True
)
with gr.Row():
pull_model_input = gr.Textbox(
placeholder="Enter model name to pull (e.g., llama3.1:8b)",
label="Pull New Model"
)
pull_btn = gr.Button("Pull Model", variant="primary")
pull_status = gr.Textbox(label="Status", interactive=False)
with gr.Tab("ℹ️ Info"):
gr.Markdown("""
### About This Space
This Hugging Face Space runs Ollama with various AI models. You can:
1. **Chat** with AI models in real-time
2. **Adjust settings** like temperature for different response styles
3. **Manage models** by pulling new ones or viewing available models
4. **Switch between models** for different capabilities
### Popular Models to Try:
- `llama3.1:8b` - General purpose, good balance of speed and quality
- `codellama:7b` - Specialized for coding tasks
- `mistral:7b` - Fast and efficient
- `deepseek-coder:6.7b` - Advanced coding capabilities
### Built for: https://huggingface.co/spaces/likhonsheikh/X
""")
# Event handlers
def submit_message(message, history, model, temp):
return assistant.chat(message, history, model, temp)
def refresh_models():
models = assistant.get_available_models()
return gr.Dropdown(choices=models)
def pull_new_model(model_name):
if not model_name.strip():
return "Please enter a model name"
if assistant.ollama.pull_model(model_name):
return f"Successfully pulled model: {model_name}"
else:
return f"Failed to pull model: {model_name}"
# Connect events
msg.submit(
submit_message,
inputs=[msg, chatbot, model_dropdown, temperature],
outputs=[chatbot, msg]
)
send_btn.click(
submit_message,
inputs=[msg, chatbot, model_dropdown, temperature],
outputs=[chatbot, msg]
)
clear_btn.click(
assistant.clear_chat,
outputs=[chatbot]
)
refresh_models_btn.click(
refresh_models,
outputs=[model_dropdown]
)
pull_btn.click(
pull_new_model,
inputs=[pull_model_input],
outputs=[pull_status]
)
return app
```
if **name** == “**main**”:
# Create and launch the app
app = create_interface()
app.launch(
server_name=“0.0.0.0”,
server_port=7860,
share=False,
show_error=True
) |