import gradio as gr import requests import json import os import time import threading import logging from typing import List, Dict, Any, Optional from datetime import datetime import asyncio import subprocess # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(**name**) class OllamaManager: def **init**(self, base_url: str = “http://localhost:11434”): self.base_url = base_url self.available_models = [] self.current_model = None ``` def wait_for_ollama(self, timeout: int = 60) -> bool: """Wait for Ollama service to be ready""" start_time = time.time() while time.time() - start_time < timeout: try: response = requests.get(f"{self.base_url}/api/tags", timeout=5) if response.status_code == 200: logger.info("Ollama service is ready") return True except requests.RequestException: time.sleep(2) return False def list_models(self) -> List[str]: """Get list of available models""" try: response = requests.get(f"{self.base_url}/api/tags") if response.status_code == 200: data = response.json() self.available_models = [model["name"] for model in data.get("models", [])] return self.available_models return [] except Exception as e: logger.error(f"Error listing models: {e}") return [] def pull_model(self, model_name: str) -> bool: """Pull a model from Ollama registry""" try: logger.info(f"Pulling model: {model_name}") response = requests.post( f"{self.base_url}/api/pull", json={"name": model_name}, stream=True ) for line in response.iter_lines(): if line: data = json.loads(line.decode('utf-8')) if data.get("status") == "success": logger.info(f"Successfully pulled model: {model_name}") return True elif "error" in data: logger.error(f"Error pulling model: {data['error']}") return False return True except Exception as e: logger.error(f"Error pulling model {model_name}: {e}") return False def chat_with_model(self, model_name: str, messages: List[Dict], temperature: float = 0.7) -> str: """Chat with an Ollama model""" try: # Convert messages to Ollama format prompt = self._format_messages(messages) response = requests.post( f"{self.base_url}/api/generate", json={ "model": model_name, "prompt": prompt, "temperature": temperature, "stream": False }, timeout=120 ) if response.status_code == 200: data = response.json() return data.get("response", "No response received") else: return f"Error: HTTP {response.status_code}" except Exception as e: logger.error(f"Error chatting with model: {e}") return f"Error: {str(e)}" def _format_messages(self, messages: List[Dict]) -> str: """Format conversation messages for Ollama""" formatted = "" for msg in messages: role = msg.get("role", "user") content = msg.get("content", "") if role == "user": formatted += f"User: {content}\n" elif role == "assistant": formatted += f"Assistant: {content}\n" formatted += "Assistant: " return formatted ``` class AIAssistant: def **init**(self): self.ollama = OllamaManager() self.conversation_history = [] self.current_model = “llama3.1:8b” # Default model ``` # Wait for Ollama and setup models self._initialize_models() def _initialize_models(self): """Initialize Ollama and pull default models""" if self.ollama.wait_for_ollama(): # Try to pull some popular models models_to_pull = [ "llama3.1:8b", "codellama:7b", "mistral:7b" ] for model in models_to_pull: if self.ollama.pull_model(model): if not self.current_model or model == "llama3.1:8b": self.current_model = model break def get_available_models(self): """Get list of available models""" return self.ollama.list_models() def chat(self, message: str, history: List, model: str = None, temperature: float = 0.7): """Main chat function""" if not message.strip(): return history, "" model = model or self.current_model if not model: return history + [[message, "No model available. Please wait for model to load."]], "" # Add user message to history history.append([message, ""]) # Prepare conversation context context_messages = [] for h in history[-10:]: # Last 10 exchanges if h[0]: # User message context_messages.append({"role": "user", "content": h[0]}) if h[1]: # Assistant message context_messages.append({"role": "assistant", "content": h[1]}) # Get AI response try: response = self.ollama.chat_with_model(model, context_messages, temperature) history[-1][1] = response except Exception as e: history[-1][1] = f"Error: {str(e)}" return history, "" def clear_chat(self): """Clear conversation history""" self.conversation_history = [] return [] def get_model_info(self, model_name: str): """Get information about a model""" try: response = requests.post( f"{self.ollama.base_url}/api/show", json={"name": model_name} ) if response.status_code == 200: return response.json() return {"error": "Model not found"} except Exception as e: return {"error": str(e)} ``` # Initialize the AI assistant assistant = AIAssistant() def create_interface(): “”“Create the Gradio interface””” ``` with gr.Blocks(title="X - AI Assistant", theme=gr.themes.Soft()) as app: gr.Markdown(""" # 🤖 X - AI Assistant Space Welcome to the X AI Assistant! This space provides access to various AI models through Ollama. **Features:** - Chat with different AI models - Adjustable temperature settings - Model management - Conversation history """) with gr.Tab("💬 Chat"): with gr.Row(): with gr.Column(scale=3): chatbot = gr.Chatbot( height=500, show_label=False, container=True, bubble_full_width=False ) with gr.Row(): msg = gr.Textbox( placeholder="Type your message here...", show_label=False, container=False, scale=4 ) send_btn = gr.Button("Send", variant="primary", scale=1) with gr.Row(): clear_btn = gr.Button("Clear Chat", variant="secondary") with gr.Column(scale=1): gr.Markdown("### Settings") model_dropdown = gr.Dropdown( choices=assistant.get_available_models(), value=assistant.current_model, label="Model", interactive=True ) temperature = gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature" ) refresh_models_btn = gr.Button("Refresh Models") with gr.Tab("🔧 Model Management"): with gr.Column(): gr.Markdown("### Available Models") model_list = gr.DataFrame( headers=["Model Name", "Status"], wrap=True ) with gr.Row(): pull_model_input = gr.Textbox( placeholder="Enter model name to pull (e.g., llama3.1:8b)", label="Pull New Model" ) pull_btn = gr.Button("Pull Model", variant="primary") pull_status = gr.Textbox(label="Status", interactive=False) with gr.Tab("ℹ️ Info"): gr.Markdown(""" ### About This Space This Hugging Face Space runs Ollama with various AI models. You can: 1. **Chat** with AI models in real-time 2. **Adjust settings** like temperature for different response styles 3. **Manage models** by pulling new ones or viewing available models 4. **Switch between models** for different capabilities ### Popular Models to Try: - `llama3.1:8b` - General purpose, good balance of speed and quality - `codellama:7b` - Specialized for coding tasks - `mistral:7b` - Fast and efficient - `deepseek-coder:6.7b` - Advanced coding capabilities ### Built for: https://huggingface.co/spaces/likhonsheikh/X """) # Event handlers def submit_message(message, history, model, temp): return assistant.chat(message, history, model, temp) def refresh_models(): models = assistant.get_available_models() return gr.Dropdown(choices=models) def pull_new_model(model_name): if not model_name.strip(): return "Please enter a model name" if assistant.ollama.pull_model(model_name): return f"Successfully pulled model: {model_name}" else: return f"Failed to pull model: {model_name}" # Connect events msg.submit( submit_message, inputs=[msg, chatbot, model_dropdown, temperature], outputs=[chatbot, msg] ) send_btn.click( submit_message, inputs=[msg, chatbot, model_dropdown, temperature], outputs=[chatbot, msg] ) clear_btn.click( assistant.clear_chat, outputs=[chatbot] ) refresh_models_btn.click( refresh_models, outputs=[model_dropdown] ) pull_btn.click( pull_new_model, inputs=[pull_model_input], outputs=[pull_status] ) return app ``` if **name** == “**main**”: # Create and launch the app app = create_interface() app.launch( server_name=“0.0.0.0”, server_port=7860, share=False, show_error=True )