Spaces:
Runtime error
Runtime error
File size: 6,972 Bytes
aba8087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
#!/usr/bin/env python3
"""
DeepCoder Model API Server
Serves the DeepCoder-14B model via FastAPI
"""
import os
import asyncio
import logging
from typing import Optional, Dict, Any
import uvicorn
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import hf_hub_download
import json
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview")
MODEL_VARIANT = os.getenv("MODEL_VARIANT", "14B-Q4_K_M")
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache")
MAX_TOKENS = 131072 # 131K context length
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
app = FastAPI(
title="DeepCoder API",
description="AI Code Generation Model API",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model variables
tokenizer = None
model = None
model_loaded = False
class CodeRequest(BaseModel):
prompt: str = Field(..., description="Code generation prompt")
temperature: float = Field(0.6, ge=0.0, le=2.0, description="Sampling temperature")
top_p: float = Field(0.95, ge=0.0, le=1.0, description="Top-p sampling")
max_tokens: int = Field(2048, ge=1, le=8192, description="Maximum tokens to generate")
stop_sequences: Optional[list] = Field(None, description="Stop sequences")
class CodeResponse(BaseModel):
generated_code: str
model_info: Dict[str, Any]
generation_params: Dict[str, Any]
async def load_model():
"""Load the DeepCoder model and tokenizer"""
global tokenizer, model, model_loaded
if model_loaded:
return
try:
logger.info(f"Loading model: {MODEL_NAME}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=CACHE_DIR,
trust_remote_code=True
)
# Load model with appropriate settings for the quantized version
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=CACHE_DIR,
trust_remote_code=True,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
load_in_4bit=True if "Q4" in MODEL_VARIANT else False,
)
if DEVICE == "cpu" and hasattr(model, 'to'):
model = model.to(DEVICE)
model_loaded = True
logger.info(f"Model loaded successfully on {DEVICE}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
await load_model()
@app.get("/")
async def root():
return {
"message": "DeepCoder API",
"model": MODEL_NAME,
"variant": MODEL_VARIANT,
"status": "ready" if model_loaded else "loading"
}
@app.get("/health")
async def health_check():
return {
"status": "healthy" if model_loaded else "loading",
"model_loaded": model_loaded,
"device": DEVICE,
"gpu_available": torch.cuda.is_available()
}
@app.get("/model/info")
async def model_info():
"""Get model information"""
if not model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded yet")
return {
"model_name": MODEL_NAME,
"variant": MODEL_VARIANT,
"max_context_length": MAX_TOKENS,
"device": DEVICE,
"model_size": "14B parameters",
"quantization": "Q4_K_M" if "Q4" in MODEL_VARIANT else "None",
"benchmarks": {
"LiveCodeBench_v5_Pass@1": "60.6%",
"Codeforces_Elo": 1936,
"Codeforces_Percentile": "95.3",
"HumanEval+_Accuracy": "92.6%"
}
}
@app.post("/generate", response_model=CodeResponse)
async def generate_code(request: CodeRequest):
"""Generate code using the DeepCoder model"""
if not model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded yet")
try:
# Tokenize input
inputs = tokenizer(
request.prompt,
return_tensors="pt",
truncation=True,
max_length=MAX_TOKENS - request.max_tokens
)
if DEVICE == "cuda":
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
# Generation parameters
generation_kwargs = {
"max_new_tokens": request.max_tokens,
"temperature": request.temperature,
"top_p": request.top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
if request.stop_sequences:
generation_kwargs["stop_sequences"] = request.stop_sequences
# Generate
with torch.no_grad():
outputs = model.generate(**inputs, **generation_kwargs)
# Decode output
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
generated_code = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return CodeResponse(
generated_code=generated_code,
model_info={
"model_name": MODEL_NAME,
"variant": MODEL_VARIANT,
"device": DEVICE
},
generation_params={
"temperature": request.temperature,
"top_p": request.top_p,
"max_tokens": request.max_tokens
}
)
except Exception as e:
logger.error(f"Generation error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.post("/chat")
async def chat_completion(request: CodeRequest):
"""Chat-style completion for code assistance"""
# Add system context for better code generation
system_prompt = """You are DeepCoder, an expert AI programming assistant. Generate high-quality, well-commented code that follows best practices."""
full_prompt = f"{system_prompt}\n\nUser: {request.prompt}\n\nAssistant:"
# Create modified request with system prompt
modified_request = CodeRequest(
prompt=full_prompt,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens,
stop_sequences=request.stop_sequences
)
return await generate_code(modified_request)
if __name__ == "__main__":
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000,
reload=False,
log_level="info"
)
|