File size: 18,106 Bytes
aba8087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
I'll help you create Docker files and set up hosting for the DeepCoder model. Let me create the necessary files for both Docker setup and potential Hugging Face deployment.

# Dockerfile for DeepCoder AI Model
FROM python:3.11-slim

# Set working directory
WORKDIR /app

# Install system dependencies
RUN apt-get update && apt-get install -y \
    curl \
    wget \
    git \
    && rm -rf /var/lib/apt/lists/*

# Install Docker Model Runner (assuming it's a Python package or CLI tool)
RUN pip install --no-cache-dir \
    torch \
    transformers \
    accelerate \
    bitsandbytes \
    huggingface_hub

# Create directories for model and cache
RUN mkdir -p /app/models /app/cache

# Set environment variables
ENV MODEL_NAME="ai/deepcoder-preview"
ENV MODEL_VARIANT="14B-Q4_K_M"
ENV HUGGINGFACE_HUB_CACHE="/app/cache"
ENV TRANSFORMERS_CACHE="/app/cache"

# Copy application files
COPY requirements.txt .
COPY app.py .
COPY download_model.py .

# Install Python dependencies
RUN pip install --no-cache-dir -r requirements.txt

# Download model during build (optional - can be done at runtime)
# RUN python download_model.py

# Expose port for API
EXPOSE 8000

# Health check
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
    CMD curl -f http://localhost:8000/health || exit 1

# Run the application
CMD ["python", "app.py"]

version: '3.8'

services:
  deepcoder-api:
    build:
      context: .
      dockerfile: Dockerfile
    container_name: deepcoder-model
    ports:
      - "8000:8000"
    environment:
      - MODEL_NAME=ai/deepcoder-preview
      - MODEL_VARIANT=14B-Q4_K_M
      - HUGGINGFACE_HUB_CACHE=/app/cache
      - CUDA_VISIBLE_DEVICES=0
    volumes:
      - ./models:/app/models
      - ./cache:/app/cache
      - ./logs:/app/logs
    restart: unless-stopped
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: 1
              capabilities: [gpu]
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
      interval: 30s
      timeout: 10s
      retries: 3
      start_period: 40s

  nginx:
    image: nginx:alpine
    container_name: deepcoder-nginx
    ports:
      - "80:80"
      - "443:443"
    volumes:
      - ./nginx.conf:/etc/nginx/nginx.conf
      - ./ssl:/etc/nginx/ssl
    depends_on:
      - deepcoder-api
    restart: unless-stopped

volumes:
  models:
  cache:
  logs:

#!/usr/bin/env python3
"""
DeepCoder Model API Server
Serves the DeepCoder-14B model via FastAPI
"""

import os
import asyncio
import logging
from typing import Optional, Dict, Any
import uvicorn
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import hf_hub_download
import json

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration
MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview")
MODEL_VARIANT = os.getenv("MODEL_VARIANT", "14B-Q4_K_M")
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache")
MAX_TOKENS = 131072  # 131K context length
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

app = FastAPI(
    title="DeepCoder API",
    description="AI Code Generation Model API",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global model variables
tokenizer = None
model = None
model_loaded = False

class CodeRequest(BaseModel):
    prompt: str = Field(..., description="Code generation prompt")
    temperature: float = Field(0.6, ge=0.0, le=2.0, description="Sampling temperature")
    top_p: float = Field(0.95, ge=0.0, le=1.0, description="Top-p sampling")
    max_tokens: int = Field(2048, ge=1, le=8192, description="Maximum tokens to generate")
    stop_sequences: Optional[list] = Field(None, description="Stop sequences")

class CodeResponse(BaseModel):
    generated_code: str
    model_info: Dict[str, Any]
    generation_params: Dict[str, Any]

async def load_model():
    """Load the DeepCoder model and tokenizer"""
    global tokenizer, model, model_loaded
    
    if model_loaded:
        return
    
    try:
        logger.info(f"Loading model: {MODEL_NAME}")
        
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_NAME,
            cache_dir=CACHE_DIR,
            trust_remote_code=True
        )
        
        # Load model with appropriate settings for the quantized version
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_NAME,
            cache_dir=CACHE_DIR,
            trust_remote_code=True,
            torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
            device_map="auto" if DEVICE == "cuda" else None,
            load_in_4bit=True if "Q4" in MODEL_VARIANT else False,
        )
        
        if DEVICE == "cpu" and hasattr(model, 'to'):
            model = model.to(DEVICE)
            
        model_loaded = True
        logger.info(f"Model loaded successfully on {DEVICE}")
        
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        raise

@app.on_event("startup")
async def startup_event():
    """Load model on startup"""
    await load_model()

@app.get("/")
async def root():
    return {
        "message": "DeepCoder API",
        "model": MODEL_NAME,
        "variant": MODEL_VARIANT,
        "status": "ready" if model_loaded else "loading"
    }

@app.get("/health")
async def health_check():
    return {
        "status": "healthy" if model_loaded else "loading",
        "model_loaded": model_loaded,
        "device": DEVICE,
        "gpu_available": torch.cuda.is_available()
    }

@app.get("/model/info")
async def model_info():
    """Get model information"""
    if not model_loaded:
        raise HTTPException(status_code=503, detail="Model not loaded yet")
    
    return {
        "model_name": MODEL_NAME,
        "variant": MODEL_VARIANT,
        "max_context_length": MAX_TOKENS,
        "device": DEVICE,
        "model_size": "14B parameters",
        "quantization": "Q4_K_M" if "Q4" in MODEL_VARIANT else "None",
        "benchmarks": {
            "LiveCodeBench_v5_Pass@1": "60.6%",
            "Codeforces_Elo": 1936,
            "Codeforces_Percentile": "95.3",
            "HumanEval+_Accuracy": "92.6%"
        }
    }

@app.post("/generate", response_model=CodeResponse)
async def generate_code(request: CodeRequest):
    """Generate code using the DeepCoder model"""
    if not model_loaded:
        raise HTTPException(status_code=503, detail="Model not loaded yet")
    
    try:
        # Tokenize input
        inputs = tokenizer(
            request.prompt,
            return_tensors="pt",
            truncation=True,
            max_length=MAX_TOKENS - request.max_tokens
        )
        
        if DEVICE == "cuda":
            inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
        
        # Generation parameters
        generation_kwargs = {
            "max_new_tokens": request.max_tokens,
            "temperature": request.temperature,
            "top_p": request.top_p,
            "do_sample": True,
            "pad_token_id": tokenizer.eos_token_id,
        }
        
        if request.stop_sequences:
            generation_kwargs["stop_sequences"] = request.stop_sequences
        
        # Generate
        with torch.no_grad():
            outputs = model.generate(**inputs, **generation_kwargs)
        
        # Decode output
        generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
        generated_code = tokenizer.decode(generated_tokens, skip_special_tokens=True)
        
        return CodeResponse(
            generated_code=generated_code,
            model_info={
                "model_name": MODEL_NAME,
                "variant": MODEL_VARIANT,
                "device": DEVICE
            },
            generation_params={
                "temperature": request.temperature,
                "top_p": request.top_p,
                "max_tokens": request.max_tokens
            }
        )
        
    except Exception as e:
        logger.error(f"Generation error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")

@app.post("/chat")
async def chat_completion(request: CodeRequest):
    """Chat-style completion for code assistance"""
    # Add system context for better code generation
    system_prompt = """You are DeepCoder, an expert AI programming assistant. Generate high-quality, well-commented code that follows best practices."""
    
    full_prompt = f"{system_prompt}\n\nUser: {request.prompt}\n\nAssistant:"
    
    # Create modified request with system prompt
    modified_request = CodeRequest(
        prompt=full_prompt,
        temperature=request.temperature,
        top_p=request.top_p,
        max_tokens=request.max_tokens,
        stop_sequences=request.stop_sequences
    )
    
    return await generate_code(modified_request)

if __name__ == "__main__":
    uvicorn.run(
        "app:app",
        host="0.0.0.0",
        port=8000,
        reload=False,
        log_level="info"
    )

fastapi==0.104.1
uvicorn[standard]==0.24.0
torch>=2.0.0
transformers>=4.35.0
accelerate>=0.24.0
bitsandbytes>=0.41.0
huggingface_hub>=0.19.0
pydantic>=2.5.0
python-multipart==0.0.6
jinja2>=3.1.0
aiofiles>=23.0.0
nvidia-ml-py3>=7.352.0
psutil>=5.9.0
requests>=2.31.0

#!/usr/bin/env python3
"""
Download script for DeepCoder model
Downloads and caches the model for faster container startup
"""

import os
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import snapshot_download

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

MODEL_NAME = os.getenv("MODEL_NAME", "ai/deepcoder-preview")
CACHE_DIR = os.getenv("HUGGINGFACE_HUB_CACHE", "/app/cache")

def download_model():
    """Download the model and tokenizer"""
    try:
        logger.info(f"Downloading model: {MODEL_NAME}")
        
        # Download model files
        snapshot_download(
            repo_id=MODEL_NAME,
            cache_dir=CACHE_DIR,
            resume_download=True
        )
        
        # Verify by loading tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_NAME,
            cache_dir=CACHE_DIR,
            trust_remote_code=True
        )
        
        logger.info("Model downloaded successfully")
        logger.info(f"Vocab size: {tokenizer.vocab_size}")
        logger.info(f"Cache directory: {CACHE_DIR}")
        
        return True
        
    except Exception as e:
        logger.error(f"Error downloading model: {str(e)}")
        return False

if __name__ == "__main__":
    success = download_model()
    if not success:
        exit(1)
    logger.info("Download complete!")

events {
    worker_connections 1024;
}

http {
    upstream deepcoder_backend {
        server deepcoder-api:8000;
    }
    
    # Rate limiting
    limit_req_zone $binary_remote_addr zone=api:10m rate=10r/m;
    
    server {
        listen 80;
        server_name localhost;
        
        # Security headers
        add_header X-Frame-Options DENY;
        add_header X-Content-Type-Options nosniff;
        add_header X-XSS-Protection "1; mode=block";
        
        # Increase client max body size for large code submissions
        client_max_body_size 10M;
        
        # Timeouts for long-running generation requests
        proxy_connect_timeout 60s;
        proxy_send_timeout 300s;
        proxy_read_timeout 300s;
        
        location / {
            proxy_pass http://deepcoder_backend;
            proxy_set_header Host $host;
            proxy_set_header X-Real-IP $remote_addr;
            proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
            proxy_set_header X-Forwarded-Proto $scheme;
        }
        
        location /generate {
            limit_req zone=api burst=5 nodelay;
            proxy_pass http://deepcoder_backend;
            proxy_set_header Host $host;
            proxy_set_header X-Real-IP $remote_addr;
            proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
            proxy_set_header X-Forwarded-Proto $scheme;
        }
        
        location /health {
            proxy_pass http://deepcoder_backend;
            access_log off;
        }
    }
}

#!/bin/bash
# setup.sh - Setup script for DeepCoder deployment

set -e

echo "πŸš€ DeepCoder Model Setup"
echo "========================"

# Create necessary directories
echo "πŸ“ Creating directories..."
mkdir -p models cache logs ssl

# Set permissions
chmod 755 models cache logs
chmod 700 ssl

# Pull the DeepCoder model using Docker Model Runner
echo "πŸ“¦ Pulling DeepCoder model..."
if command -v docker &> /dev/null; then
    # Assuming docker model runner is available
    docker model pull ai/deepcoder-preview
else
    echo "⚠️  Docker not found. Please install Docker first."
    exit 1
fi

# Check for GPU support
echo "πŸ” Checking GPU support..."
if command -v nvidia-smi &> /dev/null; then
    echo "βœ… NVIDIA GPU detected:"
    nvidia-smi --query-gpu=gpu_name,memory.total --format=csv,noheader
    
    # Check for Docker GPU support
    if docker run --rm --gpus all nvidia/cuda:11.8-base nvidia-smi &> /dev/null; then
        echo "βœ… Docker GPU support verified"
        export GPU_SUPPORT=true
    else
        echo "⚠️  Docker GPU support not available"
        export GPU_SUPPORT=false
    fi
else
    echo "⚠️  No GPU detected. Running on CPU."
    export GPU_SUPPORT=false
fi

# Build and start containers
echo "πŸ—οΈ  Building Docker containers..."
docker-compose build

echo "πŸš€ Starting services..."
if [ "$GPU_SUPPORT" = true ]; then
    docker-compose up -d
else
    # Remove GPU requirements for CPU-only deployment
    sed 's/devices:/# devices:/g' docker-compose.yml | \
    sed 's/- driver: nvidia/# - driver: nvidia/g' | \
    sed 's/count: 1/# count: 1/g' | \
    sed 's/capabilities: \[gpu\]/# capabilities: [gpu]/g' > docker-compose-cpu.yml
    docker-compose -f docker-compose-cpu.yml up -d
fi

# Wait for services to be ready
echo "⏳ Waiting for services to start..."
sleep 30

# Health check
echo "πŸ₯ Performing health check..."
for i in {1..10}; do
    if curl -f http://localhost:8000/health > /dev/null 2>&1; then
        echo "βœ… DeepCoder API is healthy!"
        break
    else
        echo "⏳ Waiting for API to be ready... (attempt $i/10)"
        sleep 10
    fi
done

# Show status
echo "πŸ“Š Service Status:"
docker-compose ps

echo ""
echo "πŸŽ‰ DeepCoder setup complete!"
echo "API endpoint: http://localhost:8000"
echo "Health check: http://localhost:8000/health"
echo "Model info: http://localhost:8000/model/info"
echo ""
echo "To test the API:"
echo "curl -X POST http://localhost:8000/generate \\"
echo "  -H 'Content-Type: application/json' \\"
echo "  -d '{\"prompt\": \"def fibonacci(n):\", \"max_tokens\": 200}'"

###########################################
# deploy-hf.sh - Hugging Face Spaces deployment
###########################################

cat > deploy-hf.sh << 'EOL'
#!/bin/bash
# Deploy to Hugging Face Spaces

set -e

echo "πŸ€— Deploying to Hugging Face Spaces"
echo "===================================="

# Check if git is configured
if ! git config user.email > /dev/null; then
    echo "⚠️  Please configure git:"
    echo "git config --global user.email 'your-email@example.com'"
    echo "git config --global user.name 'Your Name'"
    exit 1
fi

# Check if HF_TOKEN is set
if [ -z "$HF_TOKEN" ]; then
    echo "⚠️  Please set your Hugging Face token:"
    echo "export HF_TOKEN=your_hf_token_here"
    exit 1
fi

SPACE_NAME=${1:-"deepcoder-api"}
HF_USERNAME=${2:-$(whoami)}

echo "Creating Space: $HF_USERNAME/$SPACE_NAME"

# Create Hugging Face Space files
cat > README.md << EOF
---
title: DeepCoder API
emoji: πŸš€
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
license: mit
---

# DeepCoder API

High-performance code generation API powered by DeepCoder-14B model.

## Features
- 🎯 60.6% pass rate on LiveCodeBench v5
- πŸ† 1936 Elo rating on Codeforces (95.3 percentile)  
- πŸ“ 92.6% accuracy on HumanEval+
- ⚑ 131K token context length
- πŸ”§ Optimized Q4_K_M quantization

## API Endpoints
- \`POST /generate\` - Generate code from prompts
- \`POST /chat\` - Chat-style code assistance  
- \`GET /model/info\` - Model information
- \`GET /health\` - Health check

## Usage
\`\`\`bash
curl -X POST /generate \\
  -H 'Content-Type: application/json' \\
  -d '{"prompt": "def fibonacci(n):", "max_tokens": 200}'
\`\`\`
EOF

# Create Dockerfile for HF Spaces
cat > Dockerfile.hf << EOF
FROM python:3.11-slim

WORKDIR /app

RUN apt-get update && apt-get install -y curl git && rm -rf /var/lib/apt/lists/*

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

EXPOSE 7860

CMD ["python", "-m", "uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
EOF

# Update app.py for HF Spaces (port 7860)
sed 's/port=8000/port=7860/g' app.py > app_hf.py
mv app_hf.py app.py

# Initialize git repo if not exists
if [ ! -d .git ]; then
    git init
    git lfs install
fi

# Track large model files with git LFS
echo "*.bin filter=lfs diff=lfs merge=lfs -text" >> .gitattributes
echo "*.safetensors filter=lfs diff=lfs merge=lfs -text" >> .gitattributes

# Add remote if not exists
if ! git remote get-url origin > /dev/null 2>&1; then
    git remote add origin https://huggingface.co/spaces/$HF_USERNAME/$SPACE_NAME
fi

# Commit and push
git add .
git commit -m "Initial DeepCoder API deployment" || true
git push -u origin main

echo "βœ… Deployed to: https://huggingface.co/spaces/$HF_USERNAME/$SPACE_NAME"
EOL

chmod +x deploy-hf.sh

echo "πŸ“ Additional deployment script created: deploy-hf.sh"